Development of a Machine Learning Platform
Autor(a) principal: | |
---|---|
Data de Publicação: | 2021 |
Tipo de documento: | Dissertação |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10362/160388 |
Resumo: | Adoption of machine learning is becoming widespread, thus, it is natural to see a more comprehensive adoption of this technology by companies to, not only to enhance their products and services, but also to offer greater market competitiveness. Having said that, and attending to this new paradigm, the present dissertation is focused on the implementation of a platform to optimize and enhance the development of projects in the area of machine learning. This challenge arises from a proposal put forward by company GMV, which aims to make the machine learning process more accessible and intuitive for its workers and, in parallel, to ensure high levels of consistency and productivity in the development of its projects. Based on all these assumptions, a first approach is made in this dissertation, laying both on how a machine learning project is organized as well as on the problems that arise throughout its development. First, a study was made of the functioning of some platforms already present in the market, in order to understand which problems they intend to solve and which solution or solutions have been developed to address them. Then, the characteristics to be integrated in the platform were identified. The study and comparison of some technologies present in the market allowed us to select and implement the most promising ones regarding the characteristics previously identified. Finally, the proposed solution is presented, explaining both the functioning of the platform and the options taken throughout its development. |
id |
RCAP_243b70c94a8711b0927376eabcabadcc |
---|---|
oai_identifier_str |
oai:run.unl.pt:10362/160388 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Development of a Machine Learning PlatformMachine LearningMachine Learning PlatformDomínio/Área Científica::Engenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e InformáticaAdoption of machine learning is becoming widespread, thus, it is natural to see a more comprehensive adoption of this technology by companies to, not only to enhance their products and services, but also to offer greater market competitiveness. Having said that, and attending to this new paradigm, the present dissertation is focused on the implementation of a platform to optimize and enhance the development of projects in the area of machine learning. This challenge arises from a proposal put forward by company GMV, which aims to make the machine learning process more accessible and intuitive for its workers and, in parallel, to ensure high levels of consistency and productivity in the development of its projects. Based on all these assumptions, a first approach is made in this dissertation, laying both on how a machine learning project is organized as well as on the problems that arise throughout its development. First, a study was made of the functioning of some platforms already present in the market, in order to understand which problems they intend to solve and which solution or solutions have been developed to address them. Then, the characteristics to be integrated in the platform were identified. The study and comparison of some technologies present in the market allowed us to select and implement the most promising ones regarding the characteristics previously identified. Finally, the proposed solution is presented, explaining both the functioning of the platform and the options taken throughout its development.Numa altura em que se preconiza a adoção, cada vez mais generalizada, da aprendi- zagem automática, é com naturalidade que se assiste a uma adesão mais abrangente por parte das empresas a esta tecnologia. Não só para potenciar os seus produtos e serviços, mas também porque oferece uma maior competitividade no mercado. Posto isto, e aten- dendo a todo este novo paradigma, surge a presente dissertação, que tem como foco o desenvolvimento de uma plataforma que permita otimizar e potenciar o desenvolvimento de projetos na área de inteligência artificial. Este desafio surgiu de uma proposta apre- sentada pela empresa GMV, que pretende tornar o processo de aprendizagem automática mais acessível e intuitivo para os seus trabalhadores e, paralelamente, assegurar níveis elevados de consistência e produtividade no desenvolvimento dos seus projetos. Partindo de todos estes pressupostos, nesta dissertação foi feita uma primeira aborda- gem, quer sobre como é organizado um projeto de aprendizagem automática, quer aos problemas que existem ao longo do seu desenvolvimento. Posteriormente, foi feito um estudo do funcionamento de algumas plataformas já presentes no mercado, por forma a compreender quais os problemas que pretendem resolver e qual a solução ou soluções desenvolvidas para os colmatar. Feita esta análise, prosseguiu-se com a identificação das características a integrar na plataforma. Após este passo, seguiu-se o estudo e comparação de algumas tecnologias presentes no mercado tendo em vista a implementação das mais promissoras e que contemplassem as características identificadas previamente. Por fim, é apresentada a solução proposta, com a explicação quer do funcionamento da plataforma, quer das opções tomadas ao longo do seu desenvolvimento.Silva, JoãoMartins, JoséRUNDavid, Henrique Miguel Castilho2023-11-23T19:15:41Z2021-022021-02-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10362/160388enginfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-03-11T05:43:05Zoai:run.unl.pt:10362/160388Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:58:01.178096Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Development of a Machine Learning Platform |
title |
Development of a Machine Learning Platform |
spellingShingle |
Development of a Machine Learning Platform David, Henrique Miguel Castilho Machine Learning Machine Learning Platform Domínio/Área Científica::Engenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e Informática |
title_short |
Development of a Machine Learning Platform |
title_full |
Development of a Machine Learning Platform |
title_fullStr |
Development of a Machine Learning Platform |
title_full_unstemmed |
Development of a Machine Learning Platform |
title_sort |
Development of a Machine Learning Platform |
author |
David, Henrique Miguel Castilho |
author_facet |
David, Henrique Miguel Castilho |
author_role |
author |
dc.contributor.none.fl_str_mv |
Silva, João Martins, José RUN |
dc.contributor.author.fl_str_mv |
David, Henrique Miguel Castilho |
dc.subject.por.fl_str_mv |
Machine Learning Machine Learning Platform Domínio/Área Científica::Engenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e Informática |
topic |
Machine Learning Machine Learning Platform Domínio/Área Científica::Engenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e Informática |
description |
Adoption of machine learning is becoming widespread, thus, it is natural to see a more comprehensive adoption of this technology by companies to, not only to enhance their products and services, but also to offer greater market competitiveness. Having said that, and attending to this new paradigm, the present dissertation is focused on the implementation of a platform to optimize and enhance the development of projects in the area of machine learning. This challenge arises from a proposal put forward by company GMV, which aims to make the machine learning process more accessible and intuitive for its workers and, in parallel, to ensure high levels of consistency and productivity in the development of its projects. Based on all these assumptions, a first approach is made in this dissertation, laying both on how a machine learning project is organized as well as on the problems that arise throughout its development. First, a study was made of the functioning of some platforms already present in the market, in order to understand which problems they intend to solve and which solution or solutions have been developed to address them. Then, the characteristics to be integrated in the platform were identified. The study and comparison of some technologies present in the market allowed us to select and implement the most promising ones regarding the characteristics previously identified. Finally, the proposed solution is presented, explaining both the functioning of the platform and the options taken throughout its development. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-02 2021-02-01T00:00:00Z 2023-11-23T19:15:41Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10362/160388 |
url |
http://hdl.handle.net/10362/160388 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799138161701421056 |