Development of a Machine Learning Platform

Detalhes bibliográficos
Autor(a) principal: David, Henrique Miguel Castilho
Data de Publicação: 2021
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10362/160388
Resumo: Adoption of machine learning is becoming widespread, thus, it is natural to see a more comprehensive adoption of this technology by companies to, not only to enhance their products and services, but also to offer greater market competitiveness. Having said that, and attending to this new paradigm, the present dissertation is focused on the implementation of a platform to optimize and enhance the development of projects in the area of machine learning. This challenge arises from a proposal put forward by company GMV, which aims to make the machine learning process more accessible and intuitive for its workers and, in parallel, to ensure high levels of consistency and productivity in the development of its projects. Based on all these assumptions, a first approach is made in this dissertation, laying both on how a machine learning project is organized as well as on the problems that arise throughout its development. First, a study was made of the functioning of some platforms already present in the market, in order to understand which problems they intend to solve and which solution or solutions have been developed to address them. Then, the characteristics to be integrated in the platform were identified. The study and comparison of some technologies present in the market allowed us to select and implement the most promising ones regarding the characteristics previously identified. Finally, the proposed solution is presented, explaining both the functioning of the platform and the options taken throughout its development.
id RCAP_243b70c94a8711b0927376eabcabadcc
oai_identifier_str oai:run.unl.pt:10362/160388
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Development of a Machine Learning PlatformMachine LearningMachine Learning PlatformDomínio/Área Científica::Engenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e InformáticaAdoption of machine learning is becoming widespread, thus, it is natural to see a more comprehensive adoption of this technology by companies to, not only to enhance their products and services, but also to offer greater market competitiveness. Having said that, and attending to this new paradigm, the present dissertation is focused on the implementation of a platform to optimize and enhance the development of projects in the area of machine learning. This challenge arises from a proposal put forward by company GMV, which aims to make the machine learning process more accessible and intuitive for its workers and, in parallel, to ensure high levels of consistency and productivity in the development of its projects. Based on all these assumptions, a first approach is made in this dissertation, laying both on how a machine learning project is organized as well as on the problems that arise throughout its development. First, a study was made of the functioning of some platforms already present in the market, in order to understand which problems they intend to solve and which solution or solutions have been developed to address them. Then, the characteristics to be integrated in the platform were identified. The study and comparison of some technologies present in the market allowed us to select and implement the most promising ones regarding the characteristics previously identified. Finally, the proposed solution is presented, explaining both the functioning of the platform and the options taken throughout its development.Numa altura em que se preconiza a adoção, cada vez mais generalizada, da aprendi- zagem automática, é com naturalidade que se assiste a uma adesão mais abrangente por parte das empresas a esta tecnologia. Não só para potenciar os seus produtos e serviços, mas também porque oferece uma maior competitividade no mercado. Posto isto, e aten- dendo a todo este novo paradigma, surge a presente dissertação, que tem como foco o desenvolvimento de uma plataforma que permita otimizar e potenciar o desenvolvimento de projetos na área de inteligência artificial. Este desafio surgiu de uma proposta apre- sentada pela empresa GMV, que pretende tornar o processo de aprendizagem automática mais acessível e intuitivo para os seus trabalhadores e, paralelamente, assegurar níveis elevados de consistência e produtividade no desenvolvimento dos seus projetos. Partindo de todos estes pressupostos, nesta dissertação foi feita uma primeira aborda- gem, quer sobre como é organizado um projeto de aprendizagem automática, quer aos problemas que existem ao longo do seu desenvolvimento. Posteriormente, foi feito um estudo do funcionamento de algumas plataformas já presentes no mercado, por forma a compreender quais os problemas que pretendem resolver e qual a solução ou soluções desenvolvidas para os colmatar. Feita esta análise, prosseguiu-se com a identificação das características a integrar na plataforma. Após este passo, seguiu-se o estudo e comparação de algumas tecnologias presentes no mercado tendo em vista a implementação das mais promissoras e que contemplassem as características identificadas previamente. Por fim, é apresentada a solução proposta, com a explicação quer do funcionamento da plataforma, quer das opções tomadas ao longo do seu desenvolvimento.Silva, JoãoMartins, JoséRUNDavid, Henrique Miguel Castilho2023-11-23T19:15:41Z2021-022021-02-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10362/160388enginfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-03-11T05:43:05Zoai:run.unl.pt:10362/160388Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:58:01.178096Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Development of a Machine Learning Platform
title Development of a Machine Learning Platform
spellingShingle Development of a Machine Learning Platform
David, Henrique Miguel Castilho
Machine Learning
Machine Learning Platform
Domínio/Área Científica::Engenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e Informática
title_short Development of a Machine Learning Platform
title_full Development of a Machine Learning Platform
title_fullStr Development of a Machine Learning Platform
title_full_unstemmed Development of a Machine Learning Platform
title_sort Development of a Machine Learning Platform
author David, Henrique Miguel Castilho
author_facet David, Henrique Miguel Castilho
author_role author
dc.contributor.none.fl_str_mv Silva, João
Martins, José
RUN
dc.contributor.author.fl_str_mv David, Henrique Miguel Castilho
dc.subject.por.fl_str_mv Machine Learning
Machine Learning Platform
Domínio/Área Científica::Engenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e Informática
topic Machine Learning
Machine Learning Platform
Domínio/Área Científica::Engenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e Informática
description Adoption of machine learning is becoming widespread, thus, it is natural to see a more comprehensive adoption of this technology by companies to, not only to enhance their products and services, but also to offer greater market competitiveness. Having said that, and attending to this new paradigm, the present dissertation is focused on the implementation of a platform to optimize and enhance the development of projects in the area of machine learning. This challenge arises from a proposal put forward by company GMV, which aims to make the machine learning process more accessible and intuitive for its workers and, in parallel, to ensure high levels of consistency and productivity in the development of its projects. Based on all these assumptions, a first approach is made in this dissertation, laying both on how a machine learning project is organized as well as on the problems that arise throughout its development. First, a study was made of the functioning of some platforms already present in the market, in order to understand which problems they intend to solve and which solution or solutions have been developed to address them. Then, the characteristics to be integrated in the platform were identified. The study and comparison of some technologies present in the market allowed us to select and implement the most promising ones regarding the characteristics previously identified. Finally, the proposed solution is presented, explaining both the functioning of the platform and the options taken throughout its development.
publishDate 2021
dc.date.none.fl_str_mv 2021-02
2021-02-01T00:00:00Z
2023-11-23T19:15:41Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10362/160388
url http://hdl.handle.net/10362/160388
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799138161701421056