SINGULAR INTEGRAL OPERATORS ON REARRANGEMENT-INVARIANT BANACH FUNCTION SPACES
Autor(a) principal: | |
---|---|
Data de Publicação: | 2023 |
Tipo de documento: | Dissertação |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10362/160215 |
Resumo: | Given the Cauchy singular integral operator S acting on a reflexive rearrangementinvariant Banach function space, our goal is to study the Fredholmness of the operator aP + Q where P = 1 2 (I + S), Q = 1 2 (I − S) and a is a semi-almost periodic function. We start by equipping the space of the measurable functions finite μ-a.e., defined on a σ-finite measure space, with a metric. Then, we define the Banach function spaces and we proceed to a detailed study of their properties. Next up, we define the rearrangement invariant spaces and study the boundedness of the Hilbert transform H acting on these spaces. The operators S and H share the same behaviour, since S = iH, where i represents the imaginary unit. Further, we develop the necessary theory of compact and Fredholm operators. Finally, we prove our main result saying that, if a is a semi-almost periodic function and the operator aP + Q is Fredholm, then alP + Q and arP + Q are invertible on the reflexive rearrangement-invariant space, where al and ar are the left and right almost periodic representatives of a, respectively, provided by the Sarason theorem. If a is a purely almost periodic function, then a = al = ar and the above result implies that the invertibility and the Fredholmness of this operator are equivalent. |
id |
RCAP_24a899d3030f9e43bc19539e3987febd |
---|---|
oai_identifier_str |
oai:run.unl.pt:10362/160215 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
SINGULAR INTEGRAL OPERATORS ON REARRANGEMENT-INVARIANT BANACH FUNCTION SPACESBanach function spacerearrangement-invariant spaceFredholm operatorcompact operatorCauchy singular integral operatorBoyd indicesDomínio/Área Científica::Ciências Naturais::MatemáticasGiven the Cauchy singular integral operator S acting on a reflexive rearrangementinvariant Banach function space, our goal is to study the Fredholmness of the operator aP + Q where P = 1 2 (I + S), Q = 1 2 (I − S) and a is a semi-almost periodic function. We start by equipping the space of the measurable functions finite μ-a.e., defined on a σ-finite measure space, with a metric. Then, we define the Banach function spaces and we proceed to a detailed study of their properties. Next up, we define the rearrangement invariant spaces and study the boundedness of the Hilbert transform H acting on these spaces. The operators S and H share the same behaviour, since S = iH, where i represents the imaginary unit. Further, we develop the necessary theory of compact and Fredholm operators. Finally, we prove our main result saying that, if a is a semi-almost periodic function and the operator aP + Q is Fredholm, then alP + Q and arP + Q are invertible on the reflexive rearrangement-invariant space, where al and ar are the left and right almost periodic representatives of a, respectively, provided by the Sarason theorem. If a is a purely almost periodic function, then a = al = ar and the above result implies that the invertibility and the Fredholmness of this operator are equivalent.Dado o operador integral singular de Cauchy S sobre um espaço funcional de Banach invariante após rearranjo que seja reflexivo, o nosso objetivo é estudar o caso em que o operador aP + Q é de Fredholm, onde P = 1 2 (I + S), Q = 1 2 (I − S) e a é uma função semi-quase periódica. Começamos por munir o espaço de todas as funções mensuráveis que são finitas μ-a.e. definidas num espaço de medida σ-finita, com uma métrica. Depois, definimos os espaços funcionais de Banach e procedemos ao estudo detalhado das suas propriedades. A seguir, desenvolvemos a teoria necessária de operadores compactos e de Fredholm. Finalmente, provamos o resultado principal que diz que, se a é uma função semi-quase periódica e se aP + Q é de Fredholm, então alP + Q e arP + Q são invertíveis no espaço reflexivo invariante após rearranjo, onde al e ar são representantes quase periódicos esquerdo e direito de a, respectivamente, fornecidos pelo teorema de Sarason. Se a é puramente quase periódica, como a = al = ar, o resultado acima diz que a noção de invertibilidade e de Fredholm deste operador são equivalentes.Karlovych, OleksiyFernandes, CláudioRUNTurcan, Oleg2023-11-21T14:15:23Z2023-052023-05-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10362/160215enginfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-03-11T05:42:48Zoai:run.unl.pt:10362/160215Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:57:54.835985Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
SINGULAR INTEGRAL OPERATORS ON REARRANGEMENT-INVARIANT BANACH FUNCTION SPACES |
title |
SINGULAR INTEGRAL OPERATORS ON REARRANGEMENT-INVARIANT BANACH FUNCTION SPACES |
spellingShingle |
SINGULAR INTEGRAL OPERATORS ON REARRANGEMENT-INVARIANT BANACH FUNCTION SPACES Turcan, Oleg Banach function space rearrangement-invariant space Fredholm operator compact operator Cauchy singular integral operator Boyd indices Domínio/Área Científica::Ciências Naturais::Matemáticas |
title_short |
SINGULAR INTEGRAL OPERATORS ON REARRANGEMENT-INVARIANT BANACH FUNCTION SPACES |
title_full |
SINGULAR INTEGRAL OPERATORS ON REARRANGEMENT-INVARIANT BANACH FUNCTION SPACES |
title_fullStr |
SINGULAR INTEGRAL OPERATORS ON REARRANGEMENT-INVARIANT BANACH FUNCTION SPACES |
title_full_unstemmed |
SINGULAR INTEGRAL OPERATORS ON REARRANGEMENT-INVARIANT BANACH FUNCTION SPACES |
title_sort |
SINGULAR INTEGRAL OPERATORS ON REARRANGEMENT-INVARIANT BANACH FUNCTION SPACES |
author |
Turcan, Oleg |
author_facet |
Turcan, Oleg |
author_role |
author |
dc.contributor.none.fl_str_mv |
Karlovych, Oleksiy Fernandes, Cláudio RUN |
dc.contributor.author.fl_str_mv |
Turcan, Oleg |
dc.subject.por.fl_str_mv |
Banach function space rearrangement-invariant space Fredholm operator compact operator Cauchy singular integral operator Boyd indices Domínio/Área Científica::Ciências Naturais::Matemáticas |
topic |
Banach function space rearrangement-invariant space Fredholm operator compact operator Cauchy singular integral operator Boyd indices Domínio/Área Científica::Ciências Naturais::Matemáticas |
description |
Given the Cauchy singular integral operator S acting on a reflexive rearrangementinvariant Banach function space, our goal is to study the Fredholmness of the operator aP + Q where P = 1 2 (I + S), Q = 1 2 (I − S) and a is a semi-almost periodic function. We start by equipping the space of the measurable functions finite μ-a.e., defined on a σ-finite measure space, with a metric. Then, we define the Banach function spaces and we proceed to a detailed study of their properties. Next up, we define the rearrangement invariant spaces and study the boundedness of the Hilbert transform H acting on these spaces. The operators S and H share the same behaviour, since S = iH, where i represents the imaginary unit. Further, we develop the necessary theory of compact and Fredholm operators. Finally, we prove our main result saying that, if a is a semi-almost periodic function and the operator aP + Q is Fredholm, then alP + Q and arP + Q are invertible on the reflexive rearrangement-invariant space, where al and ar are the left and right almost periodic representatives of a, respectively, provided by the Sarason theorem. If a is a purely almost periodic function, then a = al = ar and the above result implies that the invertibility and the Fredholmness of this operator are equivalent. |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023-11-21T14:15:23Z 2023-05 2023-05-01T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10362/160215 |
url |
http://hdl.handle.net/10362/160215 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799138160925474816 |