SINGULAR INTEGRAL OPERATORS ON REARRANGEMENT-INVARIANT BANACH FUNCTION SPACES

Detalhes bibliográficos
Autor(a) principal: Turcan, Oleg
Data de Publicação: 2023
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10362/160215
Resumo: Given the Cauchy singular integral operator S acting on a reflexive rearrangementinvariant Banach function space, our goal is to study the Fredholmness of the operator aP + Q where P = 1 2 (I + S), Q = 1 2 (I − S) and a is a semi-almost periodic function. We start by equipping the space of the measurable functions finite μ-a.e., defined on a σ-finite measure space, with a metric. Then, we define the Banach function spaces and we proceed to a detailed study of their properties. Next up, we define the rearrangement invariant spaces and study the boundedness of the Hilbert transform H acting on these spaces. The operators S and H share the same behaviour, since S = iH, where i represents the imaginary unit. Further, we develop the necessary theory of compact and Fredholm operators. Finally, we prove our main result saying that, if a is a semi-almost periodic function and the operator aP + Q is Fredholm, then alP + Q and arP + Q are invertible on the reflexive rearrangement-invariant space, where al and ar are the left and right almost periodic representatives of a, respectively, provided by the Sarason theorem. If a is a purely almost periodic function, then a = al = ar and the above result implies that the invertibility and the Fredholmness of this operator are equivalent.
id RCAP_24a899d3030f9e43bc19539e3987febd
oai_identifier_str oai:run.unl.pt:10362/160215
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling SINGULAR INTEGRAL OPERATORS ON REARRANGEMENT-INVARIANT BANACH FUNCTION SPACESBanach function spacerearrangement-invariant spaceFredholm operatorcompact operatorCauchy singular integral operatorBoyd indicesDomínio/Área Científica::Ciências Naturais::MatemáticasGiven the Cauchy singular integral operator S acting on a reflexive rearrangementinvariant Banach function space, our goal is to study the Fredholmness of the operator aP + Q where P = 1 2 (I + S), Q = 1 2 (I − S) and a is a semi-almost periodic function. We start by equipping the space of the measurable functions finite μ-a.e., defined on a σ-finite measure space, with a metric. Then, we define the Banach function spaces and we proceed to a detailed study of their properties. Next up, we define the rearrangement invariant spaces and study the boundedness of the Hilbert transform H acting on these spaces. The operators S and H share the same behaviour, since S = iH, where i represents the imaginary unit. Further, we develop the necessary theory of compact and Fredholm operators. Finally, we prove our main result saying that, if a is a semi-almost periodic function and the operator aP + Q is Fredholm, then alP + Q and arP + Q are invertible on the reflexive rearrangement-invariant space, where al and ar are the left and right almost periodic representatives of a, respectively, provided by the Sarason theorem. If a is a purely almost periodic function, then a = al = ar and the above result implies that the invertibility and the Fredholmness of this operator are equivalent.Dado o operador integral singular de Cauchy S sobre um espaço funcional de Banach invariante após rearranjo que seja reflexivo, o nosso objetivo é estudar o caso em que o operador aP + Q é de Fredholm, onde P = 1 2 (I + S), Q = 1 2 (I − S) e a é uma função semi-quase periódica. Começamos por munir o espaço de todas as funções mensuráveis que são finitas μ-a.e. definidas num espaço de medida σ-finita, com uma métrica. Depois, definimos os espaços funcionais de Banach e procedemos ao estudo detalhado das suas propriedades. A seguir, desenvolvemos a teoria necessária de operadores compactos e de Fredholm. Finalmente, provamos o resultado principal que diz que, se a é uma função semi-quase periódica e se aP + Q é de Fredholm, então alP + Q e arP + Q são invertíveis no espaço reflexivo invariante após rearranjo, onde al e ar são representantes quase periódicos esquerdo e direito de a, respectivamente, fornecidos pelo teorema de Sarason. Se a é puramente quase periódica, como a = al = ar, o resultado acima diz que a noção de invertibilidade e de Fredholm deste operador são equivalentes.Karlovych, OleksiyFernandes, CláudioRUNTurcan, Oleg2023-11-21T14:15:23Z2023-052023-05-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10362/160215enginfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-03-11T05:42:48Zoai:run.unl.pt:10362/160215Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:57:54.835985Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv SINGULAR INTEGRAL OPERATORS ON REARRANGEMENT-INVARIANT BANACH FUNCTION SPACES
title SINGULAR INTEGRAL OPERATORS ON REARRANGEMENT-INVARIANT BANACH FUNCTION SPACES
spellingShingle SINGULAR INTEGRAL OPERATORS ON REARRANGEMENT-INVARIANT BANACH FUNCTION SPACES
Turcan, Oleg
Banach function space
rearrangement-invariant space
Fredholm operator
compact operator
Cauchy singular integral operator
Boyd indices
Domínio/Área Científica::Ciências Naturais::Matemáticas
title_short SINGULAR INTEGRAL OPERATORS ON REARRANGEMENT-INVARIANT BANACH FUNCTION SPACES
title_full SINGULAR INTEGRAL OPERATORS ON REARRANGEMENT-INVARIANT BANACH FUNCTION SPACES
title_fullStr SINGULAR INTEGRAL OPERATORS ON REARRANGEMENT-INVARIANT BANACH FUNCTION SPACES
title_full_unstemmed SINGULAR INTEGRAL OPERATORS ON REARRANGEMENT-INVARIANT BANACH FUNCTION SPACES
title_sort SINGULAR INTEGRAL OPERATORS ON REARRANGEMENT-INVARIANT BANACH FUNCTION SPACES
author Turcan, Oleg
author_facet Turcan, Oleg
author_role author
dc.contributor.none.fl_str_mv Karlovych, Oleksiy
Fernandes, Cláudio
RUN
dc.contributor.author.fl_str_mv Turcan, Oleg
dc.subject.por.fl_str_mv Banach function space
rearrangement-invariant space
Fredholm operator
compact operator
Cauchy singular integral operator
Boyd indices
Domínio/Área Científica::Ciências Naturais::Matemáticas
topic Banach function space
rearrangement-invariant space
Fredholm operator
compact operator
Cauchy singular integral operator
Boyd indices
Domínio/Área Científica::Ciências Naturais::Matemáticas
description Given the Cauchy singular integral operator S acting on a reflexive rearrangementinvariant Banach function space, our goal is to study the Fredholmness of the operator aP + Q where P = 1 2 (I + S), Q = 1 2 (I − S) and a is a semi-almost periodic function. We start by equipping the space of the measurable functions finite μ-a.e., defined on a σ-finite measure space, with a metric. Then, we define the Banach function spaces and we proceed to a detailed study of their properties. Next up, we define the rearrangement invariant spaces and study the boundedness of the Hilbert transform H acting on these spaces. The operators S and H share the same behaviour, since S = iH, where i represents the imaginary unit. Further, we develop the necessary theory of compact and Fredholm operators. Finally, we prove our main result saying that, if a is a semi-almost periodic function and the operator aP + Q is Fredholm, then alP + Q and arP + Q are invertible on the reflexive rearrangement-invariant space, where al and ar are the left and right almost periodic representatives of a, respectively, provided by the Sarason theorem. If a is a purely almost periodic function, then a = al = ar and the above result implies that the invertibility and the Fredholmness of this operator are equivalent.
publishDate 2023
dc.date.none.fl_str_mv 2023-11-21T14:15:23Z
2023-05
2023-05-01T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10362/160215
url http://hdl.handle.net/10362/160215
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799138160925474816