Automatic segmentation of the lumen region in intravascular images of the coronary artery

Detalhes bibliográficos
Autor(a) principal: Danilo Samuel Jodas
Data de Publicação: 2017
Outros Autores: Aledir Silveira Pereira, João Manuel R. S. Tavares
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: https://hdl.handle.net/10216/104656
Resumo: Image assessment of the arterial system plays an important role in the diagnosis of cardiovascular diseases. The segmentation of the lumen and media-adventitia in intravascular (IVUS) images of the coronary artery is the first step towards the evaluation of the morphology of the vessel under analysis and theidentification of possible atherosclerotic lesions. In this study, a fully automatic method for the segmentation of the lumen in IVUS images of the coronary artery is presented. The proposed method relies on theK-means algorithm and the mean roundness to identify the region corresponding to the potential lumen.An approach to identify and eliminate side branches on bifurcations is also proposed to delimit the areawith the potential lumen regions. Additionally, an active contour model is applied to refine the contourof the lumen region. In order to evaluate the segmentation accuracy, the results of the proposed methodwere compared against manual delineations made by two experts in 326 IVUS images of the coronaryartery. The average values of the Jaccard measure, Hausdorff distance, percentage of area difference andDice coefficient were 0.88 ± 0.06, 0.29 ± 0.17 mm, 0.09 ± 0.07 and 0.94 ± 0.04, respectively, in 324IVUS images successfully segmented. Additionally, a comparison with the studies found in the literatureshowed that the proposed method is slight better than the majority of the related methods that havebeen proposed. Hence, the new automatic segmentation method is shown to be effective in detecting thelumen in IVUS images without using complex solutions and user interaction.
id RCAP_24d725bc647c386552e5dc9a08348705
oai_identifier_str oai:repositorio-aberto.up.pt:10216/104656
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Automatic segmentation of the lumen region in intravascular images of the coronary arteryCiências Tecnológicas, Ciências médicas e da saúdeTechnological sciences, Medical and Health sciencesImage assessment of the arterial system plays an important role in the diagnosis of cardiovascular diseases. The segmentation of the lumen and media-adventitia in intravascular (IVUS) images of the coronary artery is the first step towards the evaluation of the morphology of the vessel under analysis and theidentification of possible atherosclerotic lesions. In this study, a fully automatic method for the segmentation of the lumen in IVUS images of the coronary artery is presented. The proposed method relies on theK-means algorithm and the mean roundness to identify the region corresponding to the potential lumen.An approach to identify and eliminate side branches on bifurcations is also proposed to delimit the areawith the potential lumen regions. Additionally, an active contour model is applied to refine the contourof the lumen region. In order to evaluate the segmentation accuracy, the results of the proposed methodwere compared against manual delineations made by two experts in 326 IVUS images of the coronaryartery. The average values of the Jaccard measure, Hausdorff distance, percentage of area difference andDice coefficient were 0.88 ± 0.06, 0.29 ± 0.17 mm, 0.09 ± 0.07 and 0.94 ± 0.04, respectively, in 324IVUS images successfully segmented. Additionally, a comparison with the studies found in the literatureshowed that the proposed method is slight better than the majority of the related methods that havebeen proposed. Hence, the new automatic segmentation method is shown to be effective in detecting thelumen in IVUS images without using complex solutions and user interaction.2017-082017-08-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleimage/pngapplication/pdfhttps://hdl.handle.net/10216/104656eng1361-841510.1016/j.media.2017.06.006Danilo Samuel JodasAledir Silveira PereiraJoão Manuel R. S. Tavaresinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-11-29T14:36:12Zoai:repositorio-aberto.up.pt:10216/104656Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T00:04:56.597707Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Automatic segmentation of the lumen region in intravascular images of the coronary artery
title Automatic segmentation of the lumen region in intravascular images of the coronary artery
spellingShingle Automatic segmentation of the lumen region in intravascular images of the coronary artery
Danilo Samuel Jodas
Ciências Tecnológicas, Ciências médicas e da saúde
Technological sciences, Medical and Health sciences
title_short Automatic segmentation of the lumen region in intravascular images of the coronary artery
title_full Automatic segmentation of the lumen region in intravascular images of the coronary artery
title_fullStr Automatic segmentation of the lumen region in intravascular images of the coronary artery
title_full_unstemmed Automatic segmentation of the lumen region in intravascular images of the coronary artery
title_sort Automatic segmentation of the lumen region in intravascular images of the coronary artery
author Danilo Samuel Jodas
author_facet Danilo Samuel Jodas
Aledir Silveira Pereira
João Manuel R. S. Tavares
author_role author
author2 Aledir Silveira Pereira
João Manuel R. S. Tavares
author2_role author
author
dc.contributor.author.fl_str_mv Danilo Samuel Jodas
Aledir Silveira Pereira
João Manuel R. S. Tavares
dc.subject.por.fl_str_mv Ciências Tecnológicas, Ciências médicas e da saúde
Technological sciences, Medical and Health sciences
topic Ciências Tecnológicas, Ciências médicas e da saúde
Technological sciences, Medical and Health sciences
description Image assessment of the arterial system plays an important role in the diagnosis of cardiovascular diseases. The segmentation of the lumen and media-adventitia in intravascular (IVUS) images of the coronary artery is the first step towards the evaluation of the morphology of the vessel under analysis and theidentification of possible atherosclerotic lesions. In this study, a fully automatic method for the segmentation of the lumen in IVUS images of the coronary artery is presented. The proposed method relies on theK-means algorithm and the mean roundness to identify the region corresponding to the potential lumen.An approach to identify and eliminate side branches on bifurcations is also proposed to delimit the areawith the potential lumen regions. Additionally, an active contour model is applied to refine the contourof the lumen region. In order to evaluate the segmentation accuracy, the results of the proposed methodwere compared against manual delineations made by two experts in 326 IVUS images of the coronaryartery. The average values of the Jaccard measure, Hausdorff distance, percentage of area difference andDice coefficient were 0.88 ± 0.06, 0.29 ± 0.17 mm, 0.09 ± 0.07 and 0.94 ± 0.04, respectively, in 324IVUS images successfully segmented. Additionally, a comparison with the studies found in the literatureshowed that the proposed method is slight better than the majority of the related methods that havebeen proposed. Hence, the new automatic segmentation method is shown to be effective in detecting thelumen in IVUS images without using complex solutions and user interaction.
publishDate 2017
dc.date.none.fl_str_mv 2017-08
2017-08-01T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://hdl.handle.net/10216/104656
url https://hdl.handle.net/10216/104656
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 1361-8415
10.1016/j.media.2017.06.006
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv image/png
application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799135973355814912