Using TanDEM-X Global DEM to Map Coastal Flooding Exposure under Sea-Level Rise: Application to Guinea-Bissau

Detalhes bibliográficos
Autor(a) principal: Fandé, Morto Baiém
Data de Publicação: 2022
Outros Autores: Ponte Lira, Cristina, Penha-Lopes, Gil
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10451/53610
Resumo: The increased exposure to coastal flooding in low-lying coastal areas is one of the consequences of sea-level rise (SLR) induced by climate changes. The coastal zone of Guinea-Bissau contains significant areas of low elevation and is home to most of the population and economic activity, making it already vulnerable to coastal flooding, especially during spring tides and storm surges (SS). Coastal flooding will tend to intensify with the expected SLR in the coming decades. This study aimed at quantifying and mapping the area exposed to the coastal flooding hazard using SLR scenarios by the years 2041, 2083, and 2100. The study analyzes and discusses the application of a the simple “bathtub” model coupled with a high-precision global digital elevation models (TanDEM-X DEM) to areas where no other data are available. Therefore, three coastal hazards hot-spots of Guinea-Bissau: Bissau, Bubaque, and Suzana, were used as case study. At each site, the area potentially exposed to coastal flooding was evaluated in a geographic information systems (GIS) environment, by estimating the Total Water Levels for each SLR scenario. For all areas, land exposed to coastal flooding hazard increases significantly and progressively with increasing SLR scenarios. Bissau and Suzana, where housing, infrastructure, and agricultural land are low-lying, presented the greatest flood exposure, while Bubaque, where housing and infrastructure are located in relatively high-lying land and rain-fed agriculture is practiced, present lesser flood exposure. The methodology presented is simple to use but powerful in identifying potentially vulnerable places to coastal flooding hazard, and its results can aid low developed countries to assess their exposure to coastal risks, thus supporting risk awareness and mitigation measures.
id RCAP_250b0d514bfa4dfaa249b879f1a88c87
oai_identifier_str oai:repositorio.ul.pt:10451/53610
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Using TanDEM-X Global DEM to Map Coastal Flooding Exposure under Sea-Level Rise: Application to Guinea-BissauThe increased exposure to coastal flooding in low-lying coastal areas is one of the consequences of sea-level rise (SLR) induced by climate changes. The coastal zone of Guinea-Bissau contains significant areas of low elevation and is home to most of the population and economic activity, making it already vulnerable to coastal flooding, especially during spring tides and storm surges (SS). Coastal flooding will tend to intensify with the expected SLR in the coming decades. This study aimed at quantifying and mapping the area exposed to the coastal flooding hazard using SLR scenarios by the years 2041, 2083, and 2100. The study analyzes and discusses the application of a the simple “bathtub” model coupled with a high-precision global digital elevation models (TanDEM-X DEM) to areas where no other data are available. Therefore, three coastal hazards hot-spots of Guinea-Bissau: Bissau, Bubaque, and Suzana, were used as case study. At each site, the area potentially exposed to coastal flooding was evaluated in a geographic information systems (GIS) environment, by estimating the Total Water Levels for each SLR scenario. For all areas, land exposed to coastal flooding hazard increases significantly and progressively with increasing SLR scenarios. Bissau and Suzana, where housing, infrastructure, and agricultural land are low-lying, presented the greatest flood exposure, while Bubaque, where housing and infrastructure are located in relatively high-lying land and rain-fed agriculture is practiced, present lesser flood exposure. The methodology presented is simple to use but powerful in identifying potentially vulnerable places to coastal flooding hazard, and its results can aid low developed countries to assess their exposure to coastal risks, thus supporting risk awareness and mitigation measures.MDPIRepositório da Universidade de LisboaFandé, Morto BaiémPonte Lira, CristinaPenha-Lopes, Gil2022-07-01T16:49:20Z20222022-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10451/53610engFandé, M.B.; Ponte Lira, C.; Penha-Lopes, G. Using TanDEM-X Global DEM to Map Coastal Flooding Exposure under Sea-Level Rise: Application to Guinea-Bissau. ISPRS Int. J. Geo-Inf. 2022, 11, 225. https://doi.org/10.3390/ijgi1104022510.3390/ijgi11040225info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-11-08T16:59:33Zoai:repositorio.ul.pt:10451/53610Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T22:04:32.974416Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Using TanDEM-X Global DEM to Map Coastal Flooding Exposure under Sea-Level Rise: Application to Guinea-Bissau
title Using TanDEM-X Global DEM to Map Coastal Flooding Exposure under Sea-Level Rise: Application to Guinea-Bissau
spellingShingle Using TanDEM-X Global DEM to Map Coastal Flooding Exposure under Sea-Level Rise: Application to Guinea-Bissau
Fandé, Morto Baiém
title_short Using TanDEM-X Global DEM to Map Coastal Flooding Exposure under Sea-Level Rise: Application to Guinea-Bissau
title_full Using TanDEM-X Global DEM to Map Coastal Flooding Exposure under Sea-Level Rise: Application to Guinea-Bissau
title_fullStr Using TanDEM-X Global DEM to Map Coastal Flooding Exposure under Sea-Level Rise: Application to Guinea-Bissau
title_full_unstemmed Using TanDEM-X Global DEM to Map Coastal Flooding Exposure under Sea-Level Rise: Application to Guinea-Bissau
title_sort Using TanDEM-X Global DEM to Map Coastal Flooding Exposure under Sea-Level Rise: Application to Guinea-Bissau
author Fandé, Morto Baiém
author_facet Fandé, Morto Baiém
Ponte Lira, Cristina
Penha-Lopes, Gil
author_role author
author2 Ponte Lira, Cristina
Penha-Lopes, Gil
author2_role author
author
dc.contributor.none.fl_str_mv Repositório da Universidade de Lisboa
dc.contributor.author.fl_str_mv Fandé, Morto Baiém
Ponte Lira, Cristina
Penha-Lopes, Gil
description The increased exposure to coastal flooding in low-lying coastal areas is one of the consequences of sea-level rise (SLR) induced by climate changes. The coastal zone of Guinea-Bissau contains significant areas of low elevation and is home to most of the population and economic activity, making it already vulnerable to coastal flooding, especially during spring tides and storm surges (SS). Coastal flooding will tend to intensify with the expected SLR in the coming decades. This study aimed at quantifying and mapping the area exposed to the coastal flooding hazard using SLR scenarios by the years 2041, 2083, and 2100. The study analyzes and discusses the application of a the simple “bathtub” model coupled with a high-precision global digital elevation models (TanDEM-X DEM) to areas where no other data are available. Therefore, three coastal hazards hot-spots of Guinea-Bissau: Bissau, Bubaque, and Suzana, were used as case study. At each site, the area potentially exposed to coastal flooding was evaluated in a geographic information systems (GIS) environment, by estimating the Total Water Levels for each SLR scenario. For all areas, land exposed to coastal flooding hazard increases significantly and progressively with increasing SLR scenarios. Bissau and Suzana, where housing, infrastructure, and agricultural land are low-lying, presented the greatest flood exposure, while Bubaque, where housing and infrastructure are located in relatively high-lying land and rain-fed agriculture is practiced, present lesser flood exposure. The methodology presented is simple to use but powerful in identifying potentially vulnerable places to coastal flooding hazard, and its results can aid low developed countries to assess their exposure to coastal risks, thus supporting risk awareness and mitigation measures.
publishDate 2022
dc.date.none.fl_str_mv 2022-07-01T16:49:20Z
2022
2022-01-01T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10451/53610
url http://hdl.handle.net/10451/53610
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Fandé, M.B.; Ponte Lira, C.; Penha-Lopes, G. Using TanDEM-X Global DEM to Map Coastal Flooding Exposure under Sea-Level Rise: Application to Guinea-Bissau. ISPRS Int. J. Geo-Inf. 2022, 11, 225. https://doi.org/10.3390/ijgi11040225
10.3390/ijgi11040225
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv MDPI
publisher.none.fl_str_mv MDPI
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799134597046337536