Neural-Swarm Visual Saliency for Path Following

Detalhes bibliográficos
Autor(a) principal: Santana, P.
Data de Publicação: 2013
Outros Autores: Mendonça, R., Correia, L., Barata, J.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://ac.els-cdn.com/S1568494612003110/1-s2.0-S1568494612003110-main.pdf?_tid=9eb214d6-b691-11e3-b529-00000aab0f02&acdnat=1396022410_4d57c9f2ab4ba1a338c6722328a351e5
https://ciencia.iscte-iul.pt/public/pub/id/10020
http://hdl.handle.net/10071/7244
Resumo: This paper extends an existing saliency-based model for path detection and tracking so that the appear- ance of the path being followed can be learned and used to bias the saliency computation process. The goal is to reduce ambiguities in the presence of strong distractors. In both original and extended path detectors, neural and swarm models are layered in order to attain a hybrid solution. With generalisation to other tasks in mind, these detectors are presented as instances of a generic neural-swarm layered architecture for visual saliency computation. The architecture considers a swarm-based substrate for the extraction of high-level perceptual representations, given the low-level perceptual representations extracted by a neural-based substrate. The goal of this division of labour is to ensure parallelism across the vision system while maintaining scalability and tractability. The proposed model is shown to exhibit, at 20 Hz, a 98.67% success rate on a diverse data-set composed of 39 videos encompassing a total of 29,789 640 × 480 frames. An open source implementation of the model, fully encapsulated as a node of the Robotics Operating System (ROS), is available for download
id RCAP_25101cd796ecc01a3ad2f608612af5c2
oai_identifier_str oai:repositorio.iscte-iul.pt:10071/7244
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Neural-Swarm Visual Saliency for Path FollowingSwarm cognitionSwarm intelligenceNeural-swarm modelsVisual saliencyPath detection and trackingAutonomous robotsThis paper extends an existing saliency-based model for path detection and tracking so that the appear- ance of the path being followed can be learned and used to bias the saliency computation process. The goal is to reduce ambiguities in the presence of strong distractors. In both original and extended path detectors, neural and swarm models are layered in order to attain a hybrid solution. With generalisation to other tasks in mind, these detectors are presented as instances of a generic neural-swarm layered architecture for visual saliency computation. The architecture considers a swarm-based substrate for the extraction of high-level perceptual representations, given the low-level perceptual representations extracted by a neural-based substrate. The goal of this division of labour is to ensure parallelism across the vision system while maintaining scalability and tractability. The proposed model is shown to exhibit, at 20 Hz, a 98.67% success rate on a diverse data-set composed of 39 videos encompassing a total of 29,789 640 × 480 frames. An open source implementation of the model, fully encapsulated as a node of the Robotics Operating System (ROS), is available for downloadElsevier2014-05-19T10:33:11Z2013-06-01T00:00:00Z2013-062014-05-19T10:30:59Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://ac.els-cdn.com/S1568494612003110/1-s2.0-S1568494612003110-main.pdf?_tid=9eb214d6-b691-11e3-b529-00000aab0f02&acdnat=1396022410_4d57c9f2ab4ba1a338c6722328a351e5https://ciencia.iscte-iul.pt/public/pub/id/10020http://hdl.handle.net/10071/7244eng1568-4946Santana, P.Mendonça, R.Correia, L.Barata, J.info:eu-repo/semantics/embargoedAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-11-09T17:58:50Zoai:repositorio.iscte-iul.pt:10071/7244Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T22:30:42.521510Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Neural-Swarm Visual Saliency for Path Following
title Neural-Swarm Visual Saliency for Path Following
spellingShingle Neural-Swarm Visual Saliency for Path Following
Santana, P.
Swarm cognition
Swarm intelligence
Neural-swarm models
Visual saliency
Path detection and tracking
Autonomous robots
title_short Neural-Swarm Visual Saliency for Path Following
title_full Neural-Swarm Visual Saliency for Path Following
title_fullStr Neural-Swarm Visual Saliency for Path Following
title_full_unstemmed Neural-Swarm Visual Saliency for Path Following
title_sort Neural-Swarm Visual Saliency for Path Following
author Santana, P.
author_facet Santana, P.
Mendonça, R.
Correia, L.
Barata, J.
author_role author
author2 Mendonça, R.
Correia, L.
Barata, J.
author2_role author
author
author
dc.contributor.author.fl_str_mv Santana, P.
Mendonça, R.
Correia, L.
Barata, J.
dc.subject.por.fl_str_mv Swarm cognition
Swarm intelligence
Neural-swarm models
Visual saliency
Path detection and tracking
Autonomous robots
topic Swarm cognition
Swarm intelligence
Neural-swarm models
Visual saliency
Path detection and tracking
Autonomous robots
description This paper extends an existing saliency-based model for path detection and tracking so that the appear- ance of the path being followed can be learned and used to bias the saliency computation process. The goal is to reduce ambiguities in the presence of strong distractors. In both original and extended path detectors, neural and swarm models are layered in order to attain a hybrid solution. With generalisation to other tasks in mind, these detectors are presented as instances of a generic neural-swarm layered architecture for visual saliency computation. The architecture considers a swarm-based substrate for the extraction of high-level perceptual representations, given the low-level perceptual representations extracted by a neural-based substrate. The goal of this division of labour is to ensure parallelism across the vision system while maintaining scalability and tractability. The proposed model is shown to exhibit, at 20 Hz, a 98.67% success rate on a diverse data-set composed of 39 videos encompassing a total of 29,789 640 × 480 frames. An open source implementation of the model, fully encapsulated as a node of the Robotics Operating System (ROS), is available for download
publishDate 2013
dc.date.none.fl_str_mv 2013-06-01T00:00:00Z
2013-06
2014-05-19T10:33:11Z
2014-05-19T10:30:59Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://ac.els-cdn.com/S1568494612003110/1-s2.0-S1568494612003110-main.pdf?_tid=9eb214d6-b691-11e3-b529-00000aab0f02&acdnat=1396022410_4d57c9f2ab4ba1a338c6722328a351e5
https://ciencia.iscte-iul.pt/public/pub/id/10020
http://hdl.handle.net/10071/7244
url http://ac.els-cdn.com/S1568494612003110/1-s2.0-S1568494612003110-main.pdf?_tid=9eb214d6-b691-11e3-b529-00000aab0f02&acdnat=1396022410_4d57c9f2ab4ba1a338c6722328a351e5
https://ciencia.iscte-iul.pt/public/pub/id/10020
http://hdl.handle.net/10071/7244
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 1568-4946
dc.rights.driver.fl_str_mv info:eu-repo/semantics/embargoedAccess
eu_rights_str_mv embargoedAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Elsevier
publisher.none.fl_str_mv Elsevier
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799134869435973632