Neural-Swarm Visual Saliency for Path Following
Autor(a) principal: | |
---|---|
Data de Publicação: | 2013 |
Outros Autores: | , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://ac.els-cdn.com/S1568494612003110/1-s2.0-S1568494612003110-main.pdf?_tid=9eb214d6-b691-11e3-b529-00000aab0f02&acdnat=1396022410_4d57c9f2ab4ba1a338c6722328a351e5 https://ciencia.iscte-iul.pt/public/pub/id/10020 http://hdl.handle.net/10071/7244 |
Resumo: | This paper extends an existing saliency-based model for path detection and tracking so that the appear- ance of the path being followed can be learned and used to bias the saliency computation process. The goal is to reduce ambiguities in the presence of strong distractors. In both original and extended path detectors, neural and swarm models are layered in order to attain a hybrid solution. With generalisation to other tasks in mind, these detectors are presented as instances of a generic neural-swarm layered architecture for visual saliency computation. The architecture considers a swarm-based substrate for the extraction of high-level perceptual representations, given the low-level perceptual representations extracted by a neural-based substrate. The goal of this division of labour is to ensure parallelism across the vision system while maintaining scalability and tractability. The proposed model is shown to exhibit, at 20 Hz, a 98.67% success rate on a diverse data-set composed of 39 videos encompassing a total of 29,789 640 × 480 frames. An open source implementation of the model, fully encapsulated as a node of the Robotics Operating System (ROS), is available for download |
id |
RCAP_25101cd796ecc01a3ad2f608612af5c2 |
---|---|
oai_identifier_str |
oai:repositorio.iscte-iul.pt:10071/7244 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Neural-Swarm Visual Saliency for Path FollowingSwarm cognitionSwarm intelligenceNeural-swarm modelsVisual saliencyPath detection and trackingAutonomous robotsThis paper extends an existing saliency-based model for path detection and tracking so that the appear- ance of the path being followed can be learned and used to bias the saliency computation process. The goal is to reduce ambiguities in the presence of strong distractors. In both original and extended path detectors, neural and swarm models are layered in order to attain a hybrid solution. With generalisation to other tasks in mind, these detectors are presented as instances of a generic neural-swarm layered architecture for visual saliency computation. The architecture considers a swarm-based substrate for the extraction of high-level perceptual representations, given the low-level perceptual representations extracted by a neural-based substrate. The goal of this division of labour is to ensure parallelism across the vision system while maintaining scalability and tractability. The proposed model is shown to exhibit, at 20 Hz, a 98.67% success rate on a diverse data-set composed of 39 videos encompassing a total of 29,789 640 × 480 frames. An open source implementation of the model, fully encapsulated as a node of the Robotics Operating System (ROS), is available for downloadElsevier2014-05-19T10:33:11Z2013-06-01T00:00:00Z2013-062014-05-19T10:30:59Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://ac.els-cdn.com/S1568494612003110/1-s2.0-S1568494612003110-main.pdf?_tid=9eb214d6-b691-11e3-b529-00000aab0f02&acdnat=1396022410_4d57c9f2ab4ba1a338c6722328a351e5https://ciencia.iscte-iul.pt/public/pub/id/10020http://hdl.handle.net/10071/7244eng1568-4946Santana, P.Mendonça, R.Correia, L.Barata, J.info:eu-repo/semantics/embargoedAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-11-09T17:58:50Zoai:repositorio.iscte-iul.pt:10071/7244Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T22:30:42.521510Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Neural-Swarm Visual Saliency for Path Following |
title |
Neural-Swarm Visual Saliency for Path Following |
spellingShingle |
Neural-Swarm Visual Saliency for Path Following Santana, P. Swarm cognition Swarm intelligence Neural-swarm models Visual saliency Path detection and tracking Autonomous robots |
title_short |
Neural-Swarm Visual Saliency for Path Following |
title_full |
Neural-Swarm Visual Saliency for Path Following |
title_fullStr |
Neural-Swarm Visual Saliency for Path Following |
title_full_unstemmed |
Neural-Swarm Visual Saliency for Path Following |
title_sort |
Neural-Swarm Visual Saliency for Path Following |
author |
Santana, P. |
author_facet |
Santana, P. Mendonça, R. Correia, L. Barata, J. |
author_role |
author |
author2 |
Mendonça, R. Correia, L. Barata, J. |
author2_role |
author author author |
dc.contributor.author.fl_str_mv |
Santana, P. Mendonça, R. Correia, L. Barata, J. |
dc.subject.por.fl_str_mv |
Swarm cognition Swarm intelligence Neural-swarm models Visual saliency Path detection and tracking Autonomous robots |
topic |
Swarm cognition Swarm intelligence Neural-swarm models Visual saliency Path detection and tracking Autonomous robots |
description |
This paper extends an existing saliency-based model for path detection and tracking so that the appear- ance of the path being followed can be learned and used to bias the saliency computation process. The goal is to reduce ambiguities in the presence of strong distractors. In both original and extended path detectors, neural and swarm models are layered in order to attain a hybrid solution. With generalisation to other tasks in mind, these detectors are presented as instances of a generic neural-swarm layered architecture for visual saliency computation. The architecture considers a swarm-based substrate for the extraction of high-level perceptual representations, given the low-level perceptual representations extracted by a neural-based substrate. The goal of this division of labour is to ensure parallelism across the vision system while maintaining scalability and tractability. The proposed model is shown to exhibit, at 20 Hz, a 98.67% success rate on a diverse data-set composed of 39 videos encompassing a total of 29,789 640 × 480 frames. An open source implementation of the model, fully encapsulated as a node of the Robotics Operating System (ROS), is available for download |
publishDate |
2013 |
dc.date.none.fl_str_mv |
2013-06-01T00:00:00Z 2013-06 2014-05-19T10:33:11Z 2014-05-19T10:30:59Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://ac.els-cdn.com/S1568494612003110/1-s2.0-S1568494612003110-main.pdf?_tid=9eb214d6-b691-11e3-b529-00000aab0f02&acdnat=1396022410_4d57c9f2ab4ba1a338c6722328a351e5 https://ciencia.iscte-iul.pt/public/pub/id/10020 http://hdl.handle.net/10071/7244 |
url |
http://ac.els-cdn.com/S1568494612003110/1-s2.0-S1568494612003110-main.pdf?_tid=9eb214d6-b691-11e3-b529-00000aab0f02&acdnat=1396022410_4d57c9f2ab4ba1a338c6722328a351e5 https://ciencia.iscte-iul.pt/public/pub/id/10020 http://hdl.handle.net/10071/7244 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
1568-4946 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/embargoedAccess |
eu_rights_str_mv |
embargoedAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier |
publisher.none.fl_str_mv |
Elsevier |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799134869435973632 |