Laser fototérmico e sua interacção com a retina humana

Detalhes bibliográficos
Autor(a) principal: Henriques, J
Data de Publicação: 2013
Outros Autores: Nascimento, J, Rosa, P, Vaz, F, Amaro, M
Tipo de documento: Artigo
Idioma: por
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10400.10/903
Resumo: Há vários efeitos resultantes da interacção da luz laser com os tecidos biológicos que podemos classificar em 5 tipos: efeito fotoquímico, fototérmico, fotoablativo, fotoablação induzida por plasma e fotodisrupção. Estes efeitos biológicos são modelados pelas propriedades ópticas dos tecidos: reflexão, absorção e dispersão e pelas características do feixe laser, nomeadamente o seu comprimento de onda (cdo) que influência a absorção da energia pelos pigmentos biológicos, bem como pela energia do feixe e do tempo da interacção do laser com os tecidos. Na retina humana usamos principalmente o laser de efeito fototérmico na banda do verde-amarelo (532nm), amarelo (577nm) ou díodo (810nm), obtidos actualmente a partir de um laser de estado sólido (Nd:YAG-KTP) ou díodo e dispensado em modo contínuo ou micropulsado (μP). Na retina humana pretende-se que o feixe laser atravesse os meios ópticos “transparentes “ ao cdo do laser em utilização e a sua energia seja absorvida pelos dois pigmentos: melanina do EPR e corio-capilar (CC) ou pela hemoglobina (microaneurismas). O calor gerado está dependente da energia do feixe por área do spot (fluência) e seu tempo de interacção com o EPR, do modo de saída em onda contínua ou micropulsos. O aquecimento induzido ao complexo EPR-CC pode ficar confinado a um volume próximo do local do spot ou aumentar no sentido da coroideia e muito mais no sentido da retina interna, lesando tecidos e células nobres da retina causando lesão térmica com desnaturação proteica e do DNA – fot ocoagulação. Vários estudos realizados permitem-nos considerar os seguintes mecanismos de acção terapêutica do laser térmico: (i) Diminuição do consumo de O2 pelos fotorreceptores (FR) destruídos pelo laser. Tem-se considerado desde há muito como o único mecanismo de acção.(ii) Aumento da oxigenação da retina – “pontes de O2” retinocoroideias (iii) Aumento da produção de mediadores químicos pelas células do EPR (PEDF e outros mediadores com expressão genética aumentada ou diminuída de determinados genes envolvidos no processo de reparação dos organelos celulares) (iv) Activação da renovação celular e remodelação dos tecidos retinianos (v) Diminuição das Metalo Proteinases da Matriz ( MMP’s) (vi) Aumento das proteinas de shock térmico (HSP’s) (vii) Migração de células HSC da medula óssea com efeito reparador. O laser térmico na retina humana pode ser usado na área macular ou na retina periférica. No primeiro caso a lesão deverá ser a menor possível de forma a preservar os tecidos e células responsáveis pela função visual, sendo importante personalizar e combinar a terapêutica (corticóides e anti-VEGF). Podemos descrever 12 técnicas diferentes para abordar o edema macular diabético (EMD) com laser térmico, preferencialmente usando cdo amarelo 577nm e verde 532nm, podendo no entanto ser usado krypton 657nm ou díodo 810nm. Quando falamos em laser temos que ter presente que podemos estar a referirmo-nos apenas a uma ou duas das técnicas descritas mas, o rigor científico, obriga-nos a conhecer as várias possibilidades técnicas e a descrever com precisão aquilo a que nos estamos a referir.
id RCAP_25bb01eb869eccdebbc7d81a887a1d2b
oai_identifier_str oai:repositorio.hff.min-saude.pt:10400.10/903
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Laser fototérmico e sua interacção com a retina humanaLaser fototérmicoDoenças da retinaHá vários efeitos resultantes da interacção da luz laser com os tecidos biológicos que podemos classificar em 5 tipos: efeito fotoquímico, fototérmico, fotoablativo, fotoablação induzida por plasma e fotodisrupção. Estes efeitos biológicos são modelados pelas propriedades ópticas dos tecidos: reflexão, absorção e dispersão e pelas características do feixe laser, nomeadamente o seu comprimento de onda (cdo) que influência a absorção da energia pelos pigmentos biológicos, bem como pela energia do feixe e do tempo da interacção do laser com os tecidos. Na retina humana usamos principalmente o laser de efeito fototérmico na banda do verde-amarelo (532nm), amarelo (577nm) ou díodo (810nm), obtidos actualmente a partir de um laser de estado sólido (Nd:YAG-KTP) ou díodo e dispensado em modo contínuo ou micropulsado (μP). Na retina humana pretende-se que o feixe laser atravesse os meios ópticos “transparentes “ ao cdo do laser em utilização e a sua energia seja absorvida pelos dois pigmentos: melanina do EPR e corio-capilar (CC) ou pela hemoglobina (microaneurismas). O calor gerado está dependente da energia do feixe por área do spot (fluência) e seu tempo de interacção com o EPR, do modo de saída em onda contínua ou micropulsos. O aquecimento induzido ao complexo EPR-CC pode ficar confinado a um volume próximo do local do spot ou aumentar no sentido da coroideia e muito mais no sentido da retina interna, lesando tecidos e células nobres da retina causando lesão térmica com desnaturação proteica e do DNA – fot ocoagulação. Vários estudos realizados permitem-nos considerar os seguintes mecanismos de acção terapêutica do laser térmico: (i) Diminuição do consumo de O2 pelos fotorreceptores (FR) destruídos pelo laser. Tem-se considerado desde há muito como o único mecanismo de acção.(ii) Aumento da oxigenação da retina – “pontes de O2” retinocoroideias (iii) Aumento da produção de mediadores químicos pelas células do EPR (PEDF e outros mediadores com expressão genética aumentada ou diminuída de determinados genes envolvidos no processo de reparação dos organelos celulares) (iv) Activação da renovação celular e remodelação dos tecidos retinianos (v) Diminuição das Metalo Proteinases da Matriz ( MMP’s) (vi) Aumento das proteinas de shock térmico (HSP’s) (vii) Migração de células HSC da medula óssea com efeito reparador. O laser térmico na retina humana pode ser usado na área macular ou na retina periférica. No primeiro caso a lesão deverá ser a menor possível de forma a preservar os tecidos e células responsáveis pela função visual, sendo importante personalizar e combinar a terapêutica (corticóides e anti-VEGF). Podemos descrever 12 técnicas diferentes para abordar o edema macular diabético (EMD) com laser térmico, preferencialmente usando cdo amarelo 577nm e verde 532nm, podendo no entanto ser usado krypton 657nm ou díodo 810nm. Quando falamos em laser temos que ter presente que podemos estar a referirmo-nos apenas a uma ou duas das técnicas descritas mas, o rigor científico, obriga-nos a conhecer as várias possibilidades técnicas e a descrever com precisão aquilo a que nos estamos a referir.Sociedade Portuguesa de OftalmologiaRepositório do Hospital Prof. Doutor Fernando FonsecaHenriques, JNascimento, JRosa, PVaz, FAmaro, M2013-03-22T14:31:38Z2013-01-01T00:00:00Z2013-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10400.10/903porOftalmologia. 2012 Out-Dez; 36(4): 353-3641646-6950info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2022-09-20T15:51:44Zoai:repositorio.hff.min-saude.pt:10400.10/903Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T15:52:05.951315Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Laser fototérmico e sua interacção com a retina humana
title Laser fototérmico e sua interacção com a retina humana
spellingShingle Laser fototérmico e sua interacção com a retina humana
Henriques, J
Laser fototérmico
Doenças da retina
title_short Laser fototérmico e sua interacção com a retina humana
title_full Laser fototérmico e sua interacção com a retina humana
title_fullStr Laser fototérmico e sua interacção com a retina humana
title_full_unstemmed Laser fototérmico e sua interacção com a retina humana
title_sort Laser fototérmico e sua interacção com a retina humana
author Henriques, J
author_facet Henriques, J
Nascimento, J
Rosa, P
Vaz, F
Amaro, M
author_role author
author2 Nascimento, J
Rosa, P
Vaz, F
Amaro, M
author2_role author
author
author
author
dc.contributor.none.fl_str_mv Repositório do Hospital Prof. Doutor Fernando Fonseca
dc.contributor.author.fl_str_mv Henriques, J
Nascimento, J
Rosa, P
Vaz, F
Amaro, M
dc.subject.por.fl_str_mv Laser fototérmico
Doenças da retina
topic Laser fototérmico
Doenças da retina
description Há vários efeitos resultantes da interacção da luz laser com os tecidos biológicos que podemos classificar em 5 tipos: efeito fotoquímico, fototérmico, fotoablativo, fotoablação induzida por plasma e fotodisrupção. Estes efeitos biológicos são modelados pelas propriedades ópticas dos tecidos: reflexão, absorção e dispersão e pelas características do feixe laser, nomeadamente o seu comprimento de onda (cdo) que influência a absorção da energia pelos pigmentos biológicos, bem como pela energia do feixe e do tempo da interacção do laser com os tecidos. Na retina humana usamos principalmente o laser de efeito fototérmico na banda do verde-amarelo (532nm), amarelo (577nm) ou díodo (810nm), obtidos actualmente a partir de um laser de estado sólido (Nd:YAG-KTP) ou díodo e dispensado em modo contínuo ou micropulsado (μP). Na retina humana pretende-se que o feixe laser atravesse os meios ópticos “transparentes “ ao cdo do laser em utilização e a sua energia seja absorvida pelos dois pigmentos: melanina do EPR e corio-capilar (CC) ou pela hemoglobina (microaneurismas). O calor gerado está dependente da energia do feixe por área do spot (fluência) e seu tempo de interacção com o EPR, do modo de saída em onda contínua ou micropulsos. O aquecimento induzido ao complexo EPR-CC pode ficar confinado a um volume próximo do local do spot ou aumentar no sentido da coroideia e muito mais no sentido da retina interna, lesando tecidos e células nobres da retina causando lesão térmica com desnaturação proteica e do DNA – fot ocoagulação. Vários estudos realizados permitem-nos considerar os seguintes mecanismos de acção terapêutica do laser térmico: (i) Diminuição do consumo de O2 pelos fotorreceptores (FR) destruídos pelo laser. Tem-se considerado desde há muito como o único mecanismo de acção.(ii) Aumento da oxigenação da retina – “pontes de O2” retinocoroideias (iii) Aumento da produção de mediadores químicos pelas células do EPR (PEDF e outros mediadores com expressão genética aumentada ou diminuída de determinados genes envolvidos no processo de reparação dos organelos celulares) (iv) Activação da renovação celular e remodelação dos tecidos retinianos (v) Diminuição das Metalo Proteinases da Matriz ( MMP’s) (vi) Aumento das proteinas de shock térmico (HSP’s) (vii) Migração de células HSC da medula óssea com efeito reparador. O laser térmico na retina humana pode ser usado na área macular ou na retina periférica. No primeiro caso a lesão deverá ser a menor possível de forma a preservar os tecidos e células responsáveis pela função visual, sendo importante personalizar e combinar a terapêutica (corticóides e anti-VEGF). Podemos descrever 12 técnicas diferentes para abordar o edema macular diabético (EMD) com laser térmico, preferencialmente usando cdo amarelo 577nm e verde 532nm, podendo no entanto ser usado krypton 657nm ou díodo 810nm. Quando falamos em laser temos que ter presente que podemos estar a referirmo-nos apenas a uma ou duas das técnicas descritas mas, o rigor científico, obriga-nos a conhecer as várias possibilidades técnicas e a descrever com precisão aquilo a que nos estamos a referir.
publishDate 2013
dc.date.none.fl_str_mv 2013-03-22T14:31:38Z
2013-01-01T00:00:00Z
2013-01-01T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10400.10/903
url http://hdl.handle.net/10400.10/903
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv Oftalmologia. 2012 Out-Dez; 36(4): 353-364
1646-6950
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Sociedade Portuguesa de Oftalmologia
publisher.none.fl_str_mv Sociedade Portuguesa de Oftalmologia
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799130385739677696