Prediction of the mechanical behavior of mortars incorporating phase change materials using data mining technique

Detalhes bibliográficos
Autor(a) principal: Cunha, Sandra Raquel Leite
Data de Publicação: 2023
Outros Autores: Aguiar, J. L. Barroso de, Martins, Francisco F.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: https://hdl.handle.net/1822/86602
Resumo: Nowadays, it is imperative to reduce the energy bill in order to contribute to a more sustainable planet. In this sense, the use of materials that contribute to the energy efficiency of buildings is a very important contribution to achieve this goal. Mortars incorporating phase change materials (PCM) can make an important contribution to this end, due to its thermal storage capacity, increasing the energy efficiency of buildings. In this work several mortars with different PCM contents were developed, using different binders (cement, aerial lime, hydraulic lime and gypsum). The aim of this study was to apply data mining techniques such as artificial neural networks (ANN), support vector machines (SVM) and multiple linear regressions (MLR) to forecast the compressive and flexural strengths of these mortars at different exposure temperatures. It was concluded that ANN models have the best predictive capacity both for compressive strength and flexural strength. However, the SVM models have a flexural strength forecasting capacity very close to ANN models.
id RCAP_25f24f6326afbe8a8565fac392b16b69
oai_identifier_str oai:repositorium.sdum.uminho.pt:1822/86602
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Prediction of the mechanical behavior of mortars incorporating phase change materials using data mining techniqueMortarsPhase change materials (PCM)Data mining techniquesArtificial neural networksSupport vector machinesMorterosMateriales de cambio de fase (PCM)Técnicas de minería de datosRedes neuronales artificialesMáquinas de vectores soporteEngenharia e Tecnologia::Engenharia CivilErradicar a pobrezaEnergias renováveis e acessíveisCidades e comunidades sustentáveisNowadays, it is imperative to reduce the energy bill in order to contribute to a more sustainable planet. In this sense, the use of materials that contribute to the energy efficiency of buildings is a very important contribution to achieve this goal. Mortars incorporating phase change materials (PCM) can make an important contribution to this end, due to its thermal storage capacity, increasing the energy efficiency of buildings. In this work several mortars with different PCM contents were developed, using different binders (cement, aerial lime, hydraulic lime and gypsum). The aim of this study was to apply data mining techniques such as artificial neural networks (ANN), support vector machines (SVM) and multiple linear regressions (MLR) to forecast the compressive and flexural strengths of these mortars at different exposure temperatures. It was concluded that ANN models have the best predictive capacity both for compressive strength and flexural strength. However, the SVM models have a flexural strength forecasting capacity very close to ANN models.Predicción del comportamiento mecánico de morteros que incorporan materiales de cambio de fase mediante técnicas de minería de datos. Hoy en día es imperativo reducir la factura energética para contribuir a un planeta más sostenible. El uso de materiales que contribuyan a la eficiencia energética de los edificios es muy importante para conseguir este objetivo. Los morteros con materiales de cambio de fase (PCM), por su capacidad de almacenamiento térmico, pueden contribuir de forma importante a este fin aumentando la eficiencia energética de los edificios. En este trabajo se desarrollaron morteros con diferentes contenidos de PCM, utilizando diferentes conglomerantes (cemento, cal aérea, cal hidráulica y yeso). El objetivo de este estudio es aplicar técnicas de minería de datos como redes neuronales artificiales (ANN), máquinas de vectores de soporte (SVM) y regresiones lineales múltiples (MLR) para pronosticar las resistencias a la compresión y flexión de morteros a diferentes temperaturas de exposición. Se concluyó que los modelos ANN tienen la mejor capacidad predictiva para la resistencia a la compresión y flexión. Los modelos SVM tienen una capacidad de predicción de la resistencia a flexión semejante a los modelos ANN.This work was partly financed by FCT through national funds under the University of Minho Programme to Stimulate Institutional Scientific Em ployment, under reference CEECINST/00156/2018 and under the R&D Unit Centre for Territory, Environment and Construction (CTAC) under reference UIDB/04047/2020 and Institute for Sustainability and Innovation in Structural Engineering (ISISE), under reference UIDB/04029/2020Instituto de Ciencias de la Construcción Eduardo Torroja (IETcc)Universidade do MinhoCunha, Sandra Raquel LeiteAguiar, J. L. Barroso deMartins, Francisco F.2023-05-052025-05-05T00:00:00Z2023-05-05T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttps://hdl.handle.net/1822/86602eng0465-27461988-322610.3989/mc.2023.298622313https://materconstrucc.revistas.csic.es/index.php/materconstrucc/article/view/2986info:eu-repo/semantics/embargoedAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-09-30T01:32:55Zoai:repositorium.sdum.uminho.pt:1822/86602Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T20:31:45.660133Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Prediction of the mechanical behavior of mortars incorporating phase change materials using data mining technique
title Prediction of the mechanical behavior of mortars incorporating phase change materials using data mining technique
spellingShingle Prediction of the mechanical behavior of mortars incorporating phase change materials using data mining technique
Cunha, Sandra Raquel Leite
Mortars
Phase change materials (PCM)
Data mining techniques
Artificial neural networks
Support vector machines
Morteros
Materiales de cambio de fase (PCM)
Técnicas de minería de datos
Redes neuronales artificiales
Máquinas de vectores soporte
Engenharia e Tecnologia::Engenharia Civil
Erradicar a pobreza
Energias renováveis e acessíveis
Cidades e comunidades sustentáveis
title_short Prediction of the mechanical behavior of mortars incorporating phase change materials using data mining technique
title_full Prediction of the mechanical behavior of mortars incorporating phase change materials using data mining technique
title_fullStr Prediction of the mechanical behavior of mortars incorporating phase change materials using data mining technique
title_full_unstemmed Prediction of the mechanical behavior of mortars incorporating phase change materials using data mining technique
title_sort Prediction of the mechanical behavior of mortars incorporating phase change materials using data mining technique
author Cunha, Sandra Raquel Leite
author_facet Cunha, Sandra Raquel Leite
Aguiar, J. L. Barroso de
Martins, Francisco F.
author_role author
author2 Aguiar, J. L. Barroso de
Martins, Francisco F.
author2_role author
author
dc.contributor.none.fl_str_mv Universidade do Minho
dc.contributor.author.fl_str_mv Cunha, Sandra Raquel Leite
Aguiar, J. L. Barroso de
Martins, Francisco F.
dc.subject.por.fl_str_mv Mortars
Phase change materials (PCM)
Data mining techniques
Artificial neural networks
Support vector machines
Morteros
Materiales de cambio de fase (PCM)
Técnicas de minería de datos
Redes neuronales artificiales
Máquinas de vectores soporte
Engenharia e Tecnologia::Engenharia Civil
Erradicar a pobreza
Energias renováveis e acessíveis
Cidades e comunidades sustentáveis
topic Mortars
Phase change materials (PCM)
Data mining techniques
Artificial neural networks
Support vector machines
Morteros
Materiales de cambio de fase (PCM)
Técnicas de minería de datos
Redes neuronales artificiales
Máquinas de vectores soporte
Engenharia e Tecnologia::Engenharia Civil
Erradicar a pobreza
Energias renováveis e acessíveis
Cidades e comunidades sustentáveis
description Nowadays, it is imperative to reduce the energy bill in order to contribute to a more sustainable planet. In this sense, the use of materials that contribute to the energy efficiency of buildings is a very important contribution to achieve this goal. Mortars incorporating phase change materials (PCM) can make an important contribution to this end, due to its thermal storage capacity, increasing the energy efficiency of buildings. In this work several mortars with different PCM contents were developed, using different binders (cement, aerial lime, hydraulic lime and gypsum). The aim of this study was to apply data mining techniques such as artificial neural networks (ANN), support vector machines (SVM) and multiple linear regressions (MLR) to forecast the compressive and flexural strengths of these mortars at different exposure temperatures. It was concluded that ANN models have the best predictive capacity both for compressive strength and flexural strength. However, the SVM models have a flexural strength forecasting capacity very close to ANN models.
publishDate 2023
dc.date.none.fl_str_mv 2023-05-05
2023-05-05T00:00:00Z
2025-05-05T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://hdl.handle.net/1822/86602
url https://hdl.handle.net/1822/86602
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 0465-2746
1988-3226
10.3989/mc.2023.298622
313
https://materconstrucc.revistas.csic.es/index.php/materconstrucc/article/view/2986
dc.rights.driver.fl_str_mv info:eu-repo/semantics/embargoedAccess
eu_rights_str_mv embargoedAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Instituto de Ciencias de la Construcción Eduardo Torroja (IETcc)
publisher.none.fl_str_mv Instituto de Ciencias de la Construcción Eduardo Torroja (IETcc)
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799133585888772096