Prediction of the mechanical behavior of mortars incorporating phase change materials using data mining technique
Autor(a) principal: | |
---|---|
Data de Publicação: | 2023 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | https://hdl.handle.net/1822/86602 |
Resumo: | Nowadays, it is imperative to reduce the energy bill in order to contribute to a more sustainable planet. In this sense, the use of materials that contribute to the energy efficiency of buildings is a very important contribution to achieve this goal. Mortars incorporating phase change materials (PCM) can make an important contribution to this end, due to its thermal storage capacity, increasing the energy efficiency of buildings. In this work several mortars with different PCM contents were developed, using different binders (cement, aerial lime, hydraulic lime and gypsum). The aim of this study was to apply data mining techniques such as artificial neural networks (ANN), support vector machines (SVM) and multiple linear regressions (MLR) to forecast the compressive and flexural strengths of these mortars at different exposure temperatures. It was concluded that ANN models have the best predictive capacity both for compressive strength and flexural strength. However, the SVM models have a flexural strength forecasting capacity very close to ANN models. |
id |
RCAP_25f24f6326afbe8a8565fac392b16b69 |
---|---|
oai_identifier_str |
oai:repositorium.sdum.uminho.pt:1822/86602 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Prediction of the mechanical behavior of mortars incorporating phase change materials using data mining techniqueMortarsPhase change materials (PCM)Data mining techniquesArtificial neural networksSupport vector machinesMorterosMateriales de cambio de fase (PCM)Técnicas de minería de datosRedes neuronales artificialesMáquinas de vectores soporteEngenharia e Tecnologia::Engenharia CivilErradicar a pobrezaEnergias renováveis e acessíveisCidades e comunidades sustentáveisNowadays, it is imperative to reduce the energy bill in order to contribute to a more sustainable planet. In this sense, the use of materials that contribute to the energy efficiency of buildings is a very important contribution to achieve this goal. Mortars incorporating phase change materials (PCM) can make an important contribution to this end, due to its thermal storage capacity, increasing the energy efficiency of buildings. In this work several mortars with different PCM contents were developed, using different binders (cement, aerial lime, hydraulic lime and gypsum). The aim of this study was to apply data mining techniques such as artificial neural networks (ANN), support vector machines (SVM) and multiple linear regressions (MLR) to forecast the compressive and flexural strengths of these mortars at different exposure temperatures. It was concluded that ANN models have the best predictive capacity both for compressive strength and flexural strength. However, the SVM models have a flexural strength forecasting capacity very close to ANN models.Predicción del comportamiento mecánico de morteros que incorporan materiales de cambio de fase mediante técnicas de minería de datos. Hoy en día es imperativo reducir la factura energética para contribuir a un planeta más sostenible. El uso de materiales que contribuyan a la eficiencia energética de los edificios es muy importante para conseguir este objetivo. Los morteros con materiales de cambio de fase (PCM), por su capacidad de almacenamiento térmico, pueden contribuir de forma importante a este fin aumentando la eficiencia energética de los edificios. En este trabajo se desarrollaron morteros con diferentes contenidos de PCM, utilizando diferentes conglomerantes (cemento, cal aérea, cal hidráulica y yeso). El objetivo de este estudio es aplicar técnicas de minería de datos como redes neuronales artificiales (ANN), máquinas de vectores de soporte (SVM) y regresiones lineales múltiples (MLR) para pronosticar las resistencias a la compresión y flexión de morteros a diferentes temperaturas de exposición. Se concluyó que los modelos ANN tienen la mejor capacidad predictiva para la resistencia a la compresión y flexión. Los modelos SVM tienen una capacidad de predicción de la resistencia a flexión semejante a los modelos ANN.This work was partly financed by FCT through national funds under the University of Minho Programme to Stimulate Institutional Scientific Em ployment, under reference CEECINST/00156/2018 and under the R&D Unit Centre for Territory, Environment and Construction (CTAC) under reference UIDB/04047/2020 and Institute for Sustainability and Innovation in Structural Engineering (ISISE), under reference UIDB/04029/2020Instituto de Ciencias de la Construcción Eduardo Torroja (IETcc)Universidade do MinhoCunha, Sandra Raquel LeiteAguiar, J. L. Barroso deMartins, Francisco F.2023-05-052025-05-05T00:00:00Z2023-05-05T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttps://hdl.handle.net/1822/86602eng0465-27461988-322610.3989/mc.2023.298622313https://materconstrucc.revistas.csic.es/index.php/materconstrucc/article/view/2986info:eu-repo/semantics/embargoedAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-09-30T01:32:55Zoai:repositorium.sdum.uminho.pt:1822/86602Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T20:31:45.660133Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Prediction of the mechanical behavior of mortars incorporating phase change materials using data mining technique |
title |
Prediction of the mechanical behavior of mortars incorporating phase change materials using data mining technique |
spellingShingle |
Prediction of the mechanical behavior of mortars incorporating phase change materials using data mining technique Cunha, Sandra Raquel Leite Mortars Phase change materials (PCM) Data mining techniques Artificial neural networks Support vector machines Morteros Materiales de cambio de fase (PCM) Técnicas de minería de datos Redes neuronales artificiales Máquinas de vectores soporte Engenharia e Tecnologia::Engenharia Civil Erradicar a pobreza Energias renováveis e acessíveis Cidades e comunidades sustentáveis |
title_short |
Prediction of the mechanical behavior of mortars incorporating phase change materials using data mining technique |
title_full |
Prediction of the mechanical behavior of mortars incorporating phase change materials using data mining technique |
title_fullStr |
Prediction of the mechanical behavior of mortars incorporating phase change materials using data mining technique |
title_full_unstemmed |
Prediction of the mechanical behavior of mortars incorporating phase change materials using data mining technique |
title_sort |
Prediction of the mechanical behavior of mortars incorporating phase change materials using data mining technique |
author |
Cunha, Sandra Raquel Leite |
author_facet |
Cunha, Sandra Raquel Leite Aguiar, J. L. Barroso de Martins, Francisco F. |
author_role |
author |
author2 |
Aguiar, J. L. Barroso de Martins, Francisco F. |
author2_role |
author author |
dc.contributor.none.fl_str_mv |
Universidade do Minho |
dc.contributor.author.fl_str_mv |
Cunha, Sandra Raquel Leite Aguiar, J. L. Barroso de Martins, Francisco F. |
dc.subject.por.fl_str_mv |
Mortars Phase change materials (PCM) Data mining techniques Artificial neural networks Support vector machines Morteros Materiales de cambio de fase (PCM) Técnicas de minería de datos Redes neuronales artificiales Máquinas de vectores soporte Engenharia e Tecnologia::Engenharia Civil Erradicar a pobreza Energias renováveis e acessíveis Cidades e comunidades sustentáveis |
topic |
Mortars Phase change materials (PCM) Data mining techniques Artificial neural networks Support vector machines Morteros Materiales de cambio de fase (PCM) Técnicas de minería de datos Redes neuronales artificiales Máquinas de vectores soporte Engenharia e Tecnologia::Engenharia Civil Erradicar a pobreza Energias renováveis e acessíveis Cidades e comunidades sustentáveis |
description |
Nowadays, it is imperative to reduce the energy bill in order to contribute to a more sustainable planet. In this sense, the use of materials that contribute to the energy efficiency of buildings is a very important contribution to achieve this goal. Mortars incorporating phase change materials (PCM) can make an important contribution to this end, due to its thermal storage capacity, increasing the energy efficiency of buildings. In this work several mortars with different PCM contents were developed, using different binders (cement, aerial lime, hydraulic lime and gypsum). The aim of this study was to apply data mining techniques such as artificial neural networks (ANN), support vector machines (SVM) and multiple linear regressions (MLR) to forecast the compressive and flexural strengths of these mortars at different exposure temperatures. It was concluded that ANN models have the best predictive capacity both for compressive strength and flexural strength. However, the SVM models have a flexural strength forecasting capacity very close to ANN models. |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023-05-05 2023-05-05T00:00:00Z 2025-05-05T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://hdl.handle.net/1822/86602 |
url |
https://hdl.handle.net/1822/86602 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
0465-2746 1988-3226 10.3989/mc.2023.298622 313 https://materconstrucc.revistas.csic.es/index.php/materconstrucc/article/view/2986 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/embargoedAccess |
eu_rights_str_mv |
embargoedAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Instituto de Ciencias de la Construcción Eduardo Torroja (IETcc) |
publisher.none.fl_str_mv |
Instituto de Ciencias de la Construcción Eduardo Torroja (IETcc) |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799133585888772096 |