On the Final Size of Epidemics with Seasonality
Autor(a) principal: | |
---|---|
Data de Publicação: | 2009 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10400.7/57 |
Resumo: | We first study an SIR system of differential equations with periodic coefficients describing an epidemic in a seasonal environment. Unlike in a constant environment, the final epidemic size may not be an increasing function of the basic reproduction number ℛ0 or of the initial fraction of infected people. Moreover, large epidemics can happen even if ℛ0<1. But like in a constant environment, the final epidemic size tends to 0 when ℛ0<1 and the initial fraction of infected people tends to 0. When ℛ0>1, the final epidemic size is bigger than the fraction 1−1/ℛ0 of the initially nonimmune population. In summary, the basic reproduction number ℛ0 keeps its classical threshold property but many other properties are no longer true in a seasonal environment. These theoretical results should be kept in mind when analyzing data for emerging vector-borne diseases (West-Nile, dengue, chikungunya) or air-borne diseases (SARS, pandemic influenza); all these diseases being influenced by seasonality. |
id |
RCAP_2647a2a2d81c2f22db34e63c0399eacd |
---|---|
oai_identifier_str |
oai:arca.igc.gulbenkian.pt:10400.7/57 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
On the Final Size of Epidemics with SeasonalityBasic reproduction numberSeasonalityFinal epidemic sizeWe first study an SIR system of differential equations with periodic coefficients describing an epidemic in a seasonal environment. Unlike in a constant environment, the final epidemic size may not be an increasing function of the basic reproduction number ℛ0 or of the initial fraction of infected people. Moreover, large epidemics can happen even if ℛ0<1. But like in a constant environment, the final epidemic size tends to 0 when ℛ0<1 and the initial fraction of infected people tends to 0. When ℛ0>1, the final epidemic size is bigger than the fraction 1−1/ℛ0 of the initially nonimmune population. In summary, the basic reproduction number ℛ0 keeps its classical threshold property but many other properties are no longer true in a seasonal environment. These theoretical results should be kept in mind when analyzing data for emerging vector-borne diseases (West-Nile, dengue, chikungunya) or air-borne diseases (SARS, pandemic influenza); all these diseases being influenced by seasonality.ARCABacäer, N.Gomes, M.G.M.2009-10-09T09:15:08Z20092009-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10400.7/57engBacaër,N., Gomes,M.G.M. (2009)."On the Final Size of Epidemics with Seasonality". Bulletin of Mathematical Biology.[Epub ahead of print]1522-9602info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2022-11-29T14:34:36Zoai:arca.igc.gulbenkian.pt:10400.7/57Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T16:11:33.260476Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
On the Final Size of Epidemics with Seasonality |
title |
On the Final Size of Epidemics with Seasonality |
spellingShingle |
On the Final Size of Epidemics with Seasonality Bacäer, N. Basic reproduction number Seasonality Final epidemic size |
title_short |
On the Final Size of Epidemics with Seasonality |
title_full |
On the Final Size of Epidemics with Seasonality |
title_fullStr |
On the Final Size of Epidemics with Seasonality |
title_full_unstemmed |
On the Final Size of Epidemics with Seasonality |
title_sort |
On the Final Size of Epidemics with Seasonality |
author |
Bacäer, N. |
author_facet |
Bacäer, N. Gomes, M.G.M. |
author_role |
author |
author2 |
Gomes, M.G.M. |
author2_role |
author |
dc.contributor.none.fl_str_mv |
ARCA |
dc.contributor.author.fl_str_mv |
Bacäer, N. Gomes, M.G.M. |
dc.subject.por.fl_str_mv |
Basic reproduction number Seasonality Final epidemic size |
topic |
Basic reproduction number Seasonality Final epidemic size |
description |
We first study an SIR system of differential equations with periodic coefficients describing an epidemic in a seasonal environment. Unlike in a constant environment, the final epidemic size may not be an increasing function of the basic reproduction number ℛ0 or of the initial fraction of infected people. Moreover, large epidemics can happen even if ℛ0<1. But like in a constant environment, the final epidemic size tends to 0 when ℛ0<1 and the initial fraction of infected people tends to 0. When ℛ0>1, the final epidemic size is bigger than the fraction 1−1/ℛ0 of the initially nonimmune population. In summary, the basic reproduction number ℛ0 keeps its classical threshold property but many other properties are no longer true in a seasonal environment. These theoretical results should be kept in mind when analyzing data for emerging vector-borne diseases (West-Nile, dengue, chikungunya) or air-borne diseases (SARS, pandemic influenza); all these diseases being influenced by seasonality. |
publishDate |
2009 |
dc.date.none.fl_str_mv |
2009-10-09T09:15:08Z 2009 2009-01-01T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10400.7/57 |
url |
http://hdl.handle.net/10400.7/57 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Bacaër,N., Gomes,M.G.M. (2009)."On the Final Size of Epidemics with Seasonality". Bulletin of Mathematical Biology.[Epub ahead of print] 1522-9602 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799130571397398528 |