Stabilities for a class of higher order integro-differential equations

Detalhes bibliográficos
Autor(a) principal: Castro, L. P.
Data de Publicação: 2018
Outros Autores: Simões, A. M.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10773/28673
Resumo: This work is devoted to analyse different kinds of stabilities for higher order integro-differential equations within appropriate metric spaces. We will consider the sigma-semi-Hyers-Ulam stability which is a new kind of stability somehow between the Hyers-Ulam and the Hyers-Ulam-Rassias stabilities. Sufficient conditions are obtained in view to guarantee Hyers-Ulam, sigma-semi-Hyers-Ulam and Hyers-Ulam-Rassias stabilities for such a class of integro-differential equations. We will be considering finite and infinite intervals as integration domains. Among the used techniques, we have fixed point arguments and generalizations of the Bielecki metric.
id RCAP_2663363b43da43843b54116133af1473
oai_identifier_str oai:ria.ua.pt:10773/28673
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Stabilities for a class of higher order integro-differential equationsStabilityHyers-Ulam-Rassias stabilityIntegro-differential equationThis work is devoted to analyse different kinds of stabilities for higher order integro-differential equations within appropriate metric spaces. We will consider the sigma-semi-Hyers-Ulam stability which is a new kind of stability somehow between the Hyers-Ulam and the Hyers-Ulam-Rassias stabilities. Sufficient conditions are obtained in view to guarantee Hyers-Ulam, sigma-semi-Hyers-Ulam and Hyers-Ulam-Rassias stabilities for such a class of integro-differential equations. We will be considering finite and infinite intervals as integration domains. Among the used techniques, we have fixed point arguments and generalizations of the Bielecki metric.AIP Publishing2020-06-12T18:42:27Z2018-12-04T00:00:00Z2018-12-04info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10773/28673eng0094-243X10.1063/1.5081532Castro, L. P.Simões, A. M.info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-02-22T11:55:27Zoai:ria.ua.pt:10773/28673Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:01:09.575714Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Stabilities for a class of higher order integro-differential equations
title Stabilities for a class of higher order integro-differential equations
spellingShingle Stabilities for a class of higher order integro-differential equations
Castro, L. P.
Stability
Hyers-Ulam-Rassias stability
Integro-differential equation
title_short Stabilities for a class of higher order integro-differential equations
title_full Stabilities for a class of higher order integro-differential equations
title_fullStr Stabilities for a class of higher order integro-differential equations
title_full_unstemmed Stabilities for a class of higher order integro-differential equations
title_sort Stabilities for a class of higher order integro-differential equations
author Castro, L. P.
author_facet Castro, L. P.
Simões, A. M.
author_role author
author2 Simões, A. M.
author2_role author
dc.contributor.author.fl_str_mv Castro, L. P.
Simões, A. M.
dc.subject.por.fl_str_mv Stability
Hyers-Ulam-Rassias stability
Integro-differential equation
topic Stability
Hyers-Ulam-Rassias stability
Integro-differential equation
description This work is devoted to analyse different kinds of stabilities for higher order integro-differential equations within appropriate metric spaces. We will consider the sigma-semi-Hyers-Ulam stability which is a new kind of stability somehow between the Hyers-Ulam and the Hyers-Ulam-Rassias stabilities. Sufficient conditions are obtained in view to guarantee Hyers-Ulam, sigma-semi-Hyers-Ulam and Hyers-Ulam-Rassias stabilities for such a class of integro-differential equations. We will be considering finite and infinite intervals as integration domains. Among the used techniques, we have fixed point arguments and generalizations of the Bielecki metric.
publishDate 2018
dc.date.none.fl_str_mv 2018-12-04T00:00:00Z
2018-12-04
2020-06-12T18:42:27Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10773/28673
url http://hdl.handle.net/10773/28673
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 0094-243X
10.1063/1.5081532
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv AIP Publishing
publisher.none.fl_str_mv AIP Publishing
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799137667796959232