Predictive modelling applied to propensity to buy personal accidents insurance products
Autor(a) principal: | |
---|---|
Data de Publicação: | 2018 |
Tipo de documento: | Dissertação |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10362/37698 |
Resumo: | Internship Report presented as the partial requirement for obtaining a Master's degree in Data Science and Advanced Analytics |
id |
RCAP_266565d752bbdb549d8fab7623cd73ef |
---|---|
oai_identifier_str |
oai:run.unl.pt:10362/37698 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Predictive modelling applied to propensity to buy personal accidents insurance productsPredictive modelsData miningSupervised learningPropensity to buyLogistic regressionDecision treesArtificial neural networksEnsemble modelsInternship Report presented as the partial requirement for obtaining a Master's degree in Data Science and Advanced AnalyticsPredictive models have been largely used in organizational scenarios with the increasing popularity of machine learning. They play a fundamental role in the support of customer acquisition in marketing campaigns. This report describes the development of a propensity to buy model for personal accident insurance products. The entire process from business understanding to the deployment of the final model is analyzed with the objective of linking the theory to practice.Castelli, MauroRUNSantos, Esdras Christo Moura dos2018-05-23T16:42:16Z2018-05-222018-05-22T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10362/37698TID:201919710enginfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-03-11T04:21:00Zoai:run.unl.pt:10362/37698Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:30:55.875016Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Predictive modelling applied to propensity to buy personal accidents insurance products |
title |
Predictive modelling applied to propensity to buy personal accidents insurance products |
spellingShingle |
Predictive modelling applied to propensity to buy personal accidents insurance products Santos, Esdras Christo Moura dos Predictive models Data mining Supervised learning Propensity to buy Logistic regression Decision trees Artificial neural networks Ensemble models |
title_short |
Predictive modelling applied to propensity to buy personal accidents insurance products |
title_full |
Predictive modelling applied to propensity to buy personal accidents insurance products |
title_fullStr |
Predictive modelling applied to propensity to buy personal accidents insurance products |
title_full_unstemmed |
Predictive modelling applied to propensity to buy personal accidents insurance products |
title_sort |
Predictive modelling applied to propensity to buy personal accidents insurance products |
author |
Santos, Esdras Christo Moura dos |
author_facet |
Santos, Esdras Christo Moura dos |
author_role |
author |
dc.contributor.none.fl_str_mv |
Castelli, Mauro RUN |
dc.contributor.author.fl_str_mv |
Santos, Esdras Christo Moura dos |
dc.subject.por.fl_str_mv |
Predictive models Data mining Supervised learning Propensity to buy Logistic regression Decision trees Artificial neural networks Ensemble models |
topic |
Predictive models Data mining Supervised learning Propensity to buy Logistic regression Decision trees Artificial neural networks Ensemble models |
description |
Internship Report presented as the partial requirement for obtaining a Master's degree in Data Science and Advanced Analytics |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018-05-23T16:42:16Z 2018-05-22 2018-05-22T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10362/37698 TID:201919710 |
url |
http://hdl.handle.net/10362/37698 |
identifier_str_mv |
TID:201919710 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799137933147504640 |