Preference rules for label ranking: Mining patterns in multi-target relations

Detalhes bibliográficos
Autor(a) principal: de Sá, Cláudio Rebelo
Data de Publicação: 2018
Outros Autores: Azevedo, Paulo J., Soares, Carlos, Jorge, Alípio Mário, Knobbe, Arno
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/1822/71614
Resumo: In this paper, we investigate two variants of association rules for preference data, Label Ranking Association Rules and Pairwise Association Rules. Label Ranking Association Rules (LRAR) are the equivalent of Class Association Rules (CAR) for the Label Ranking task. In CAR, the consequent is a single class, to which the example is expected to belong to. In LRAR, the consequent is a ranking of the labels. The generation of LRAR requires special support and confidence measures to assess the similarity of rankings. In this work, we carry out a sensitivity analysis of these similarity-based measures. We want to understand which datasets benefit more from such measures and which parameters have more influence in the accuracy of the model. Furthermore, we propose an alternative type of rules, the Pairwise Association Rules (PAR), which are defined as association rules with a set of pairwise preferences in the consequent. While PAR can be used both as descriptive and predictive models, they are essentially descriptive models. Experimental results show the potential of both approaches.
id RCAP_26e4bf4e48b7f5ee0317de30460e5726
oai_identifier_str oai:repositorium.sdum.uminho.pt:1822/71614
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Preference rules for label ranking: Mining patterns in multi-target relationsAssociation rulesLabel rankingPairwise comparisonsCiências Naturais::Ciências da Computação e da InformaçãoScience & TechnologyIn this paper, we investigate two variants of association rules for preference data, Label Ranking Association Rules and Pairwise Association Rules. Label Ranking Association Rules (LRAR) are the equivalent of Class Association Rules (CAR) for the Label Ranking task. In CAR, the consequent is a single class, to which the example is expected to belong to. In LRAR, the consequent is a ranking of the labels. The generation of LRAR requires special support and confidence measures to assess the similarity of rankings. In this work, we carry out a sensitivity analysis of these similarity-based measures. We want to understand which datasets benefit more from such measures and which parameters have more influence in the accuracy of the model. Furthermore, we propose an alternative type of rules, the Pairwise Association Rules (PAR), which are defined as association rules with a set of pairwise preferences in the consequent. While PAR can be used both as descriptive and predictive models, they are essentially descriptive models. Experimental results show the potential of both approaches.This research has received funding from the ECSEL Joint Undertaking, the framework programme for research and innovation horizon 2020 (2014-2020) under grant agreement number 662189-MANTIS-2014-1, and by National Funds through the FCT — Fundação para a Ciência e a Tecnologia (Portuguese Foundation for Science and Technology) as part of project UID/EEA/50014/2013.Elsevier B.V.Universidade do Minhode Sá, Cláudio RebeloAzevedo, Paulo J.Soares, CarlosJorge, Alípio MárioKnobbe, Arno20182018-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/1822/71614engde Sá, C. R., Azevedo, P., Soares, C., Jorge, A. M., & Knobbe, A. (2018). Preference rules for label ranking: Mining patterns in multi-target relations. Information Fusion, 40, 112-125. doi: https://doi.org/10.1016/j.inffus.2017.07.0011566-253510.1016/j.inffus.2017.07.001https://www.sciencedirect.com/science/article/pii/S1566253517304311info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-07-21T12:20:15Zoai:repositorium.sdum.uminho.pt:1822/71614Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T19:13:20.627888Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Preference rules for label ranking: Mining patterns in multi-target relations
title Preference rules for label ranking: Mining patterns in multi-target relations
spellingShingle Preference rules for label ranking: Mining patterns in multi-target relations
de Sá, Cláudio Rebelo
Association rules
Label ranking
Pairwise comparisons
Ciências Naturais::Ciências da Computação e da Informação
Science & Technology
title_short Preference rules for label ranking: Mining patterns in multi-target relations
title_full Preference rules for label ranking: Mining patterns in multi-target relations
title_fullStr Preference rules for label ranking: Mining patterns in multi-target relations
title_full_unstemmed Preference rules for label ranking: Mining patterns in multi-target relations
title_sort Preference rules for label ranking: Mining patterns in multi-target relations
author de Sá, Cláudio Rebelo
author_facet de Sá, Cláudio Rebelo
Azevedo, Paulo J.
Soares, Carlos
Jorge, Alípio Mário
Knobbe, Arno
author_role author
author2 Azevedo, Paulo J.
Soares, Carlos
Jorge, Alípio Mário
Knobbe, Arno
author2_role author
author
author
author
dc.contributor.none.fl_str_mv Universidade do Minho
dc.contributor.author.fl_str_mv de Sá, Cláudio Rebelo
Azevedo, Paulo J.
Soares, Carlos
Jorge, Alípio Mário
Knobbe, Arno
dc.subject.por.fl_str_mv Association rules
Label ranking
Pairwise comparisons
Ciências Naturais::Ciências da Computação e da Informação
Science & Technology
topic Association rules
Label ranking
Pairwise comparisons
Ciências Naturais::Ciências da Computação e da Informação
Science & Technology
description In this paper, we investigate two variants of association rules for preference data, Label Ranking Association Rules and Pairwise Association Rules. Label Ranking Association Rules (LRAR) are the equivalent of Class Association Rules (CAR) for the Label Ranking task. In CAR, the consequent is a single class, to which the example is expected to belong to. In LRAR, the consequent is a ranking of the labels. The generation of LRAR requires special support and confidence measures to assess the similarity of rankings. In this work, we carry out a sensitivity analysis of these similarity-based measures. We want to understand which datasets benefit more from such measures and which parameters have more influence in the accuracy of the model. Furthermore, we propose an alternative type of rules, the Pairwise Association Rules (PAR), which are defined as association rules with a set of pairwise preferences in the consequent. While PAR can be used both as descriptive and predictive models, they are essentially descriptive models. Experimental results show the potential of both approaches.
publishDate 2018
dc.date.none.fl_str_mv 2018
2018-01-01T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/1822/71614
url http://hdl.handle.net/1822/71614
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv de Sá, C. R., Azevedo, P., Soares, C., Jorge, A. M., & Knobbe, A. (2018). Preference rules for label ranking: Mining patterns in multi-target relations. Information Fusion, 40, 112-125. doi: https://doi.org/10.1016/j.inffus.2017.07.001
1566-2535
10.1016/j.inffus.2017.07.001
https://www.sciencedirect.com/science/article/pii/S1566253517304311
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Elsevier B.V.
publisher.none.fl_str_mv Elsevier B.V.
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799132571979743232