Preference rules for label ranking: Mining patterns in multi-target relations
Autor(a) principal: | |
---|---|
Data de Publicação: | 2018 |
Outros Autores: | , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/1822/71614 |
Resumo: | In this paper, we investigate two variants of association rules for preference data, Label Ranking Association Rules and Pairwise Association Rules. Label Ranking Association Rules (LRAR) are the equivalent of Class Association Rules (CAR) for the Label Ranking task. In CAR, the consequent is a single class, to which the example is expected to belong to. In LRAR, the consequent is a ranking of the labels. The generation of LRAR requires special support and confidence measures to assess the similarity of rankings. In this work, we carry out a sensitivity analysis of these similarity-based measures. We want to understand which datasets benefit more from such measures and which parameters have more influence in the accuracy of the model. Furthermore, we propose an alternative type of rules, the Pairwise Association Rules (PAR), which are defined as association rules with a set of pairwise preferences in the consequent. While PAR can be used both as descriptive and predictive models, they are essentially descriptive models. Experimental results show the potential of both approaches. |
id |
RCAP_26e4bf4e48b7f5ee0317de30460e5726 |
---|---|
oai_identifier_str |
oai:repositorium.sdum.uminho.pt:1822/71614 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Preference rules for label ranking: Mining patterns in multi-target relationsAssociation rulesLabel rankingPairwise comparisonsCiências Naturais::Ciências da Computação e da InformaçãoScience & TechnologyIn this paper, we investigate two variants of association rules for preference data, Label Ranking Association Rules and Pairwise Association Rules. Label Ranking Association Rules (LRAR) are the equivalent of Class Association Rules (CAR) for the Label Ranking task. In CAR, the consequent is a single class, to which the example is expected to belong to. In LRAR, the consequent is a ranking of the labels. The generation of LRAR requires special support and confidence measures to assess the similarity of rankings. In this work, we carry out a sensitivity analysis of these similarity-based measures. We want to understand which datasets benefit more from such measures and which parameters have more influence in the accuracy of the model. Furthermore, we propose an alternative type of rules, the Pairwise Association Rules (PAR), which are defined as association rules with a set of pairwise preferences in the consequent. While PAR can be used both as descriptive and predictive models, they are essentially descriptive models. Experimental results show the potential of both approaches.This research has received funding from the ECSEL Joint Undertaking, the framework programme for research and innovation horizon 2020 (2014-2020) under grant agreement number 662189-MANTIS-2014-1, and by National Funds through the FCT — Fundação para a Ciência e a Tecnologia (Portuguese Foundation for Science and Technology) as part of project UID/EEA/50014/2013.Elsevier B.V.Universidade do Minhode Sá, Cláudio RebeloAzevedo, Paulo J.Soares, CarlosJorge, Alípio MárioKnobbe, Arno20182018-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/1822/71614engde Sá, C. R., Azevedo, P., Soares, C., Jorge, A. M., & Knobbe, A. (2018). Preference rules for label ranking: Mining patterns in multi-target relations. Information Fusion, 40, 112-125. doi: https://doi.org/10.1016/j.inffus.2017.07.0011566-253510.1016/j.inffus.2017.07.001https://www.sciencedirect.com/science/article/pii/S1566253517304311info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-07-21T12:20:15Zoai:repositorium.sdum.uminho.pt:1822/71614Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T19:13:20.627888Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Preference rules for label ranking: Mining patterns in multi-target relations |
title |
Preference rules for label ranking: Mining patterns in multi-target relations |
spellingShingle |
Preference rules for label ranking: Mining patterns in multi-target relations de Sá, Cláudio Rebelo Association rules Label ranking Pairwise comparisons Ciências Naturais::Ciências da Computação e da Informação Science & Technology |
title_short |
Preference rules for label ranking: Mining patterns in multi-target relations |
title_full |
Preference rules for label ranking: Mining patterns in multi-target relations |
title_fullStr |
Preference rules for label ranking: Mining patterns in multi-target relations |
title_full_unstemmed |
Preference rules for label ranking: Mining patterns in multi-target relations |
title_sort |
Preference rules for label ranking: Mining patterns in multi-target relations |
author |
de Sá, Cláudio Rebelo |
author_facet |
de Sá, Cláudio Rebelo Azevedo, Paulo J. Soares, Carlos Jorge, Alípio Mário Knobbe, Arno |
author_role |
author |
author2 |
Azevedo, Paulo J. Soares, Carlos Jorge, Alípio Mário Knobbe, Arno |
author2_role |
author author author author |
dc.contributor.none.fl_str_mv |
Universidade do Minho |
dc.contributor.author.fl_str_mv |
de Sá, Cláudio Rebelo Azevedo, Paulo J. Soares, Carlos Jorge, Alípio Mário Knobbe, Arno |
dc.subject.por.fl_str_mv |
Association rules Label ranking Pairwise comparisons Ciências Naturais::Ciências da Computação e da Informação Science & Technology |
topic |
Association rules Label ranking Pairwise comparisons Ciências Naturais::Ciências da Computação e da Informação Science & Technology |
description |
In this paper, we investigate two variants of association rules for preference data, Label Ranking Association Rules and Pairwise Association Rules. Label Ranking Association Rules (LRAR) are the equivalent of Class Association Rules (CAR) for the Label Ranking task. In CAR, the consequent is a single class, to which the example is expected to belong to. In LRAR, the consequent is a ranking of the labels. The generation of LRAR requires special support and confidence measures to assess the similarity of rankings. In this work, we carry out a sensitivity analysis of these similarity-based measures. We want to understand which datasets benefit more from such measures and which parameters have more influence in the accuracy of the model. Furthermore, we propose an alternative type of rules, the Pairwise Association Rules (PAR), which are defined as association rules with a set of pairwise preferences in the consequent. While PAR can be used both as descriptive and predictive models, they are essentially descriptive models. Experimental results show the potential of both approaches. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018 2018-01-01T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/1822/71614 |
url |
http://hdl.handle.net/1822/71614 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
de Sá, C. R., Azevedo, P., Soares, C., Jorge, A. M., & Knobbe, A. (2018). Preference rules for label ranking: Mining patterns in multi-target relations. Information Fusion, 40, 112-125. doi: https://doi.org/10.1016/j.inffus.2017.07.001 1566-2535 10.1016/j.inffus.2017.07.001 https://www.sciencedirect.com/science/article/pii/S1566253517304311 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier B.V. |
publisher.none.fl_str_mv |
Elsevier B.V. |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799132571979743232 |