Adipose tissue derived stem cells secretome: soluble factors and their roles in regenerative medicine
Autor(a) principal: | |
---|---|
Data de Publicação: | 2010 |
Outros Autores: | , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/1822/20646 |
Resumo: | Stem cells have been long looked at as possible therapeutic vehicles for different health related problems. Among the different existing stem cell populations, Adipose derived Stem Cells (ASCs) have been gathering attention in the last 10 years. When compared to other stem cells populations and sources, ASCs can be easily isolated while providing higher yields upon the processing of adipose tissue. Similar to other stem cell populations, it was initially thought that the main potential of ASCs for regenerative medicine approaches was intimately related to their differentiation capability. Although this is true, there has been an increasing body of literature describing the trophic effects of ASCs on the protection, survival and differentiation of a variety of endogenous cells/tissues. Moreover, they have also shown to possess an immunomodulatory character. This effect is closely related to the ASCs’ secretome and the soluble factors found within it. Molecules such as hepatocyte growth factor (HGF), granulocyte and macrophage colony stimulating factors, interleukins (ILs) 6, 7, 8 and 11, tumor necrosis factor-α (TNF-α), vascular endothelial growth factor (VEGF), brain derived neurotrophic factor (BDNF), nerve growth factor (NGF), adipokines and others have been identified within the ASCs’ secretome. Due to its importance regarding future applications for the field of regenerative medicine, we aim, in the present review, to make a comprehensive analysis of the literature relating to the ASCs’ secretome and its relevance to the immune and central nervous system, vascularization and cardiac regeneration. The concluding section will highlight some of the major challenges that remain before ASCs can be used for future clinical applications. |
id |
RCAP_272add5595f2d4fb81ff54b3cc1c0285 |
---|---|
oai_identifier_str |
oai:repositorium.sdum.uminho.pt:1822/20646 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Adipose tissue derived stem cells secretome: soluble factors and their roles in regenerative medicineAdipose tissue derived stem cellsSecretomeSoluble factorsCell survivalCell differentiationTrophic supportScience & TechnologyStem cells have been long looked at as possible therapeutic vehicles for different health related problems. Among the different existing stem cell populations, Adipose derived Stem Cells (ASCs) have been gathering attention in the last 10 years. When compared to other stem cells populations and sources, ASCs can be easily isolated while providing higher yields upon the processing of adipose tissue. Similar to other stem cell populations, it was initially thought that the main potential of ASCs for regenerative medicine approaches was intimately related to their differentiation capability. Although this is true, there has been an increasing body of literature describing the trophic effects of ASCs on the protection, survival and differentiation of a variety of endogenous cells/tissues. Moreover, they have also shown to possess an immunomodulatory character. This effect is closely related to the ASCs’ secretome and the soluble factors found within it. Molecules such as hepatocyte growth factor (HGF), granulocyte and macrophage colony stimulating factors, interleukins (ILs) 6, 7, 8 and 11, tumor necrosis factor-α (TNF-α), vascular endothelial growth factor (VEGF), brain derived neurotrophic factor (BDNF), nerve growth factor (NGF), adipokines and others have been identified within the ASCs’ secretome. Due to its importance regarding future applications for the field of regenerative medicine, we aim, in the present review, to make a comprehensive analysis of the literature relating to the ASCs’ secretome and its relevance to the immune and central nervous system, vascularization and cardiac regeneration. The concluding section will highlight some of the major challenges that remain before ASCs can be used for future clinical applications.Bentham Science PublishersUniversidade do MinhoSalgado, A. J.Reis, R. L.Sousa, NunoGimble, Jeffrey M.20102010-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/1822/20646eng1574-888X10.2174/15748881079126856419941460info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-07-21T12:50:45Zoai:repositorium.sdum.uminho.pt:1822/20646Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T19:49:30.382333Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Adipose tissue derived stem cells secretome: soluble factors and their roles in regenerative medicine |
title |
Adipose tissue derived stem cells secretome: soluble factors and their roles in regenerative medicine |
spellingShingle |
Adipose tissue derived stem cells secretome: soluble factors and their roles in regenerative medicine Salgado, A. J. Adipose tissue derived stem cells Secretome Soluble factors Cell survival Cell differentiation Trophic support Science & Technology |
title_short |
Adipose tissue derived stem cells secretome: soluble factors and their roles in regenerative medicine |
title_full |
Adipose tissue derived stem cells secretome: soluble factors and their roles in regenerative medicine |
title_fullStr |
Adipose tissue derived stem cells secretome: soluble factors and their roles in regenerative medicine |
title_full_unstemmed |
Adipose tissue derived stem cells secretome: soluble factors and their roles in regenerative medicine |
title_sort |
Adipose tissue derived stem cells secretome: soluble factors and their roles in regenerative medicine |
author |
Salgado, A. J. |
author_facet |
Salgado, A. J. Reis, R. L. Sousa, Nuno Gimble, Jeffrey M. |
author_role |
author |
author2 |
Reis, R. L. Sousa, Nuno Gimble, Jeffrey M. |
author2_role |
author author author |
dc.contributor.none.fl_str_mv |
Universidade do Minho |
dc.contributor.author.fl_str_mv |
Salgado, A. J. Reis, R. L. Sousa, Nuno Gimble, Jeffrey M. |
dc.subject.por.fl_str_mv |
Adipose tissue derived stem cells Secretome Soluble factors Cell survival Cell differentiation Trophic support Science & Technology |
topic |
Adipose tissue derived stem cells Secretome Soluble factors Cell survival Cell differentiation Trophic support Science & Technology |
description |
Stem cells have been long looked at as possible therapeutic vehicles for different health related problems. Among the different existing stem cell populations, Adipose derived Stem Cells (ASCs) have been gathering attention in the last 10 years. When compared to other stem cells populations and sources, ASCs can be easily isolated while providing higher yields upon the processing of adipose tissue. Similar to other stem cell populations, it was initially thought that the main potential of ASCs for regenerative medicine approaches was intimately related to their differentiation capability. Although this is true, there has been an increasing body of literature describing the trophic effects of ASCs on the protection, survival and differentiation of a variety of endogenous cells/tissues. Moreover, they have also shown to possess an immunomodulatory character. This effect is closely related to the ASCs’ secretome and the soluble factors found within it. Molecules such as hepatocyte growth factor (HGF), granulocyte and macrophage colony stimulating factors, interleukins (ILs) 6, 7, 8 and 11, tumor necrosis factor-α (TNF-α), vascular endothelial growth factor (VEGF), brain derived neurotrophic factor (BDNF), nerve growth factor (NGF), adipokines and others have been identified within the ASCs’ secretome. Due to its importance regarding future applications for the field of regenerative medicine, we aim, in the present review, to make a comprehensive analysis of the literature relating to the ASCs’ secretome and its relevance to the immune and central nervous system, vascularization and cardiac regeneration. The concluding section will highlight some of the major challenges that remain before ASCs can be used for future clinical applications. |
publishDate |
2010 |
dc.date.none.fl_str_mv |
2010 2010-01-01T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/1822/20646 |
url |
http://hdl.handle.net/1822/20646 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
1574-888X 10.2174/157488810791268564 19941460 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Bentham Science Publishers |
publisher.none.fl_str_mv |
Bentham Science Publishers |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799133077430075392 |