Radiomics in head and neck cancer outcome predictions
Autor(a) principal: | |
---|---|
Data de Publicação: | 2022 |
Outros Autores: | , , , , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | https://hdl.handle.net/1822/81081 |
Resumo: | The data are publicly available on The Cancer Image Archive (TCIA) [41] website and can be downloaded using the NBIA Data Retriever [42]: https://wiki.cancerimagingarchive.net/display/Public/Head-Neck-PET-CT, accessed on 11 October 2022. The source code is available on GitHub: https://github.com/MariaGoncalves3/Radiomics_for_Head_And_Neck_Cancer, accessed on 11 October 2022. |
id |
RCAP_27629a5040fd287b38be1c75ab45bf68 |
---|---|
oai_identifier_str |
oai:repositorium.sdum.uminho.pt:1822/81081 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Radiomics in head and neck cancer outcome predictionsPrecision medicineHead and neck cancerRadiomicsLocoregional recurrencesDistant metastasesOverall survivalCTMultilayer perceptronXGBoostScience & TechnologyThe data are publicly available on The Cancer Image Archive (TCIA) [41] website and can be downloaded using the NBIA Data Retriever [42]: https://wiki.cancerimagingarchive.net/display/Public/Head-Neck-PET-CT, accessed on 11 October 2022. The source code is available on GitHub: https://github.com/MariaGoncalves3/Radiomics_for_Head_And_Neck_Cancer, accessed on 11 October 2022.Head and neck cancer has great regional anatomical complexity, as it can develop in different structures, exhibiting diverse tumour manifestations and high intratumoural heterogeneity, which is highly related to resistance to treatment, progression, the appearance of metastases, and tumour recurrences. Radiomics has the potential to address these obstacles by extracting quantitative, measurable, and extractable features from the region of interest in medical images. Medical imaging is a common source of information in clinical practice, presenting a potential alternative to biopsy, as it allows the extraction of a large number of features that, although not visible to the naked eye, may be relevant for tumour characterisation. Taking advantage of machine learning techniques, the set of features extracted when associated with biological parameters can be used for diagnosis, prognosis, and predictive accuracy valuable for clinical decision-making. Therefore, the main goal of this contribution was to determine to what extent the features extracted from Computed Tomography (CT) are related to cancer prognosis, namely Locoregional Recurrences (LRs), the development of Distant Metastases (DMs), and Overall Survival (OS). Through the set of tumour characteristics, predictive models were developed using machine learning techniques. The tumour was described by radiomic features, extracted from images, and by the clinical data of the patient. The performance of the models demonstrated that the most successful algorithm was XGBoost, and the inclusion of the patients’ clinical data was an asset for cancer prognosis. Under these conditions, models were created that can reliably predict the LR, DM, and OS status, with the area under the ROC curve (AUC) values equal to 0.74, 0.84, and 0.91, respectively. In summary, the promising results obtained show the potential of radiomics, once the considered cancer prognosis can, in fact, be expressed through CT scans.This work received funding from the Austrian Science Fund (FWF) KLI 678-B31: “enFaced-Virtual and Augmented Reality Training and Navigation Module for 3D-Printed Facial Defect Reconstructions”,FWF KLI 1044: “enFaced 2.0-Instant AR Tool for Maxillofacial Surgery” (https://enfaced2.ikim.nrw/, accessed on 11 October 2022), “CAMed” (COMET K-Project 871132), which is funded by the Austrian Federal Ministry of Transport, Innovation and Technology (BMVIT), the Austrian Federal Ministry for Digital and Economic Affairs (BMDW), the Styrian Business Promotion Agency (SFG), and the FCT-Fundação para a Ciência e a Tecnologia within the R&D Units Project Scope: UIDB/00319/2020. Further, we acknowledge the REACT-EU project KITE (Plattform für KI-Translation Essen, https://kite.ikim.nrw/, accessed on 11 October 2022).Multidisciplinary Digital Publishing InstituteUniversidade do MinhoGonçalves, MariaGsaxner, ChristinaFerreira, AndréLi, JianningPuladi, BehrusKleesiek, JensEgger, JanAlves, Victor2022-11-082022-11-08T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttps://hdl.handle.net/1822/81081engGonçalves, M.; Gsaxner, C.; Ferreira, A.; Li, J.; Puladi, B.; Kleesiek, J.; Egger, J.; Alves, V. Radiomics in Head and Neck Cancer Outcome Predictions. Diagnostics 2022, 12, 2733. https://doi.org/10.3390/diagnostics121127332075-441810.3390/diagnostics12112733https://www.mdpi.com/2075-4418/12/11/2733info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-07-21T12:52:21Zoai:repositorium.sdum.uminho.pt:1822/81081Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T19:51:26.307085Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Radiomics in head and neck cancer outcome predictions |
title |
Radiomics in head and neck cancer outcome predictions |
spellingShingle |
Radiomics in head and neck cancer outcome predictions Gonçalves, Maria Precision medicine Head and neck cancer Radiomics Locoregional recurrences Distant metastases Overall survival CT Multilayer perceptron XGBoost Science & Technology |
title_short |
Radiomics in head and neck cancer outcome predictions |
title_full |
Radiomics in head and neck cancer outcome predictions |
title_fullStr |
Radiomics in head and neck cancer outcome predictions |
title_full_unstemmed |
Radiomics in head and neck cancer outcome predictions |
title_sort |
Radiomics in head and neck cancer outcome predictions |
author |
Gonçalves, Maria |
author_facet |
Gonçalves, Maria Gsaxner, Christina Ferreira, André Li, Jianning Puladi, Behrus Kleesiek, Jens Egger, Jan Alves, Victor |
author_role |
author |
author2 |
Gsaxner, Christina Ferreira, André Li, Jianning Puladi, Behrus Kleesiek, Jens Egger, Jan Alves, Victor |
author2_role |
author author author author author author author |
dc.contributor.none.fl_str_mv |
Universidade do Minho |
dc.contributor.author.fl_str_mv |
Gonçalves, Maria Gsaxner, Christina Ferreira, André Li, Jianning Puladi, Behrus Kleesiek, Jens Egger, Jan Alves, Victor |
dc.subject.por.fl_str_mv |
Precision medicine Head and neck cancer Radiomics Locoregional recurrences Distant metastases Overall survival CT Multilayer perceptron XGBoost Science & Technology |
topic |
Precision medicine Head and neck cancer Radiomics Locoregional recurrences Distant metastases Overall survival CT Multilayer perceptron XGBoost Science & Technology |
description |
The data are publicly available on The Cancer Image Archive (TCIA) [41] website and can be downloaded using the NBIA Data Retriever [42]: https://wiki.cancerimagingarchive.net/display/Public/Head-Neck-PET-CT, accessed on 11 October 2022. The source code is available on GitHub: https://github.com/MariaGoncalves3/Radiomics_for_Head_And_Neck_Cancer, accessed on 11 October 2022. |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-11-08 2022-11-08T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://hdl.handle.net/1822/81081 |
url |
https://hdl.handle.net/1822/81081 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Gonçalves, M.; Gsaxner, C.; Ferreira, A.; Li, J.; Puladi, B.; Kleesiek, J.; Egger, J.; Alves, V. Radiomics in Head and Neck Cancer Outcome Predictions. Diagnostics 2022, 12, 2733. https://doi.org/10.3390/diagnostics12112733 2075-4418 10.3390/diagnostics12112733 https://www.mdpi.com/2075-4418/12/11/2733 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Multidisciplinary Digital Publishing Institute |
publisher.none.fl_str_mv |
Multidisciplinary Digital Publishing Institute |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799133103185199104 |