Statistical models for analyzing count data: predictors of length of stay among HIV patients in Portugal using a multilevel model

Detalhes bibliográficos
Autor(a) principal: Shaaban, AN
Data de Publicação: 2021
Outros Autores: Peleteiro, B, Martins, MRO
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: https://hdl.handle.net/10216/149516
Resumo: Background This study offers a comprehensive approach to precisely analyze the complexly distributed length of stay among HIV admissions in Portugal. Objective To provide an illustration of statistical techniques for analysing count data using longitudinal predictors of length of stay among HIV hospitalizations in Portugal. Method Registered discharges in the Portuguese National Health Service (NHS) facilities Between January 2009 and December 2017, a total of 26,505 classified under Major Diagnostic Category (MDC) created for patients with HIV infection, with HIV/AIDS as a main or secondary cause of admission, were used to predict length of stay among HIV hospitalizations in Portugal. Several strategies were applied to select the best count fit model that includes the Poisson regression model, zero-inflated Poisson, the negative binomial regression model, and zero-inflated negative binomial regression model. A random hospital effects term has been incorporated into the negative binomial model to examine the dependence between observations within the same hospital. A multivariable analysis has been performed to assess the effect of covariates on length of stay. Results The median length of stay in our study was 11 days (interquartile range: 6–22). Statistical comparisons among the count models revealed that the random-effects negative binomial models provided the best fit with observed data. Admissions among males or admissions associated with TB infection, pneumocystis, cytomegalovirus, candidiasis, toxoplasmosis, or mycobacterium disease exhibit a highly significant increase in length of stay. Perfect trends were observed in which a higher number of diagnoses or procedures lead to significantly higher length of stay. The random-effects term included in our model and refers to unexplained factors specific to each hospital revealed obvious differences in quality among the hospitals included in our study. Conclusions This study provides a comprehensive approach to address unique problems associated with the prediction of length of stay among HIV patients in Portugal.
id RCAP_279124ca67b6ddabcd77e93d38cef63a
oai_identifier_str oai:repositorio-aberto.up.pt:10216/149516
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Statistical models for analyzing count data: predictors of length of stay among HIV patients in Portugal using a multilevel modelBackground This study offers a comprehensive approach to precisely analyze the complexly distributed length of stay among HIV admissions in Portugal. Objective To provide an illustration of statistical techniques for analysing count data using longitudinal predictors of length of stay among HIV hospitalizations in Portugal. Method Registered discharges in the Portuguese National Health Service (NHS) facilities Between January 2009 and December 2017, a total of 26,505 classified under Major Diagnostic Category (MDC) created for patients with HIV infection, with HIV/AIDS as a main or secondary cause of admission, were used to predict length of stay among HIV hospitalizations in Portugal. Several strategies were applied to select the best count fit model that includes the Poisson regression model, zero-inflated Poisson, the negative binomial regression model, and zero-inflated negative binomial regression model. A random hospital effects term has been incorporated into the negative binomial model to examine the dependence between observations within the same hospital. A multivariable analysis has been performed to assess the effect of covariates on length of stay. Results The median length of stay in our study was 11 days (interquartile range: 6–22). Statistical comparisons among the count models revealed that the random-effects negative binomial models provided the best fit with observed data. Admissions among males or admissions associated with TB infection, pneumocystis, cytomegalovirus, candidiasis, toxoplasmosis, or mycobacterium disease exhibit a highly significant increase in length of stay. Perfect trends were observed in which a higher number of diagnoses or procedures lead to significantly higher length of stay. The random-effects term included in our model and refers to unexplained factors specific to each hospital revealed obvious differences in quality among the hospitals included in our study. Conclusions This study provides a comprehensive approach to address unique problems associated with the prediction of length of stay among HIV patients in Portugal.BMC20212021-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttps://hdl.handle.net/10216/149516eng1472-696310.1186/s12913-021-06389-1Shaaban, ANPeleteiro, BMartins, MROinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-11-29T14:18:12Zoai:repositorio-aberto.up.pt:10216/149516Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T23:58:27.292763Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Statistical models for analyzing count data: predictors of length of stay among HIV patients in Portugal using a multilevel model
title Statistical models for analyzing count data: predictors of length of stay among HIV patients in Portugal using a multilevel model
spellingShingle Statistical models for analyzing count data: predictors of length of stay among HIV patients in Portugal using a multilevel model
Shaaban, AN
title_short Statistical models for analyzing count data: predictors of length of stay among HIV patients in Portugal using a multilevel model
title_full Statistical models for analyzing count data: predictors of length of stay among HIV patients in Portugal using a multilevel model
title_fullStr Statistical models for analyzing count data: predictors of length of stay among HIV patients in Portugal using a multilevel model
title_full_unstemmed Statistical models for analyzing count data: predictors of length of stay among HIV patients in Portugal using a multilevel model
title_sort Statistical models for analyzing count data: predictors of length of stay among HIV patients in Portugal using a multilevel model
author Shaaban, AN
author_facet Shaaban, AN
Peleteiro, B
Martins, MRO
author_role author
author2 Peleteiro, B
Martins, MRO
author2_role author
author
dc.contributor.author.fl_str_mv Shaaban, AN
Peleteiro, B
Martins, MRO
description Background This study offers a comprehensive approach to precisely analyze the complexly distributed length of stay among HIV admissions in Portugal. Objective To provide an illustration of statistical techniques for analysing count data using longitudinal predictors of length of stay among HIV hospitalizations in Portugal. Method Registered discharges in the Portuguese National Health Service (NHS) facilities Between January 2009 and December 2017, a total of 26,505 classified under Major Diagnostic Category (MDC) created for patients with HIV infection, with HIV/AIDS as a main or secondary cause of admission, were used to predict length of stay among HIV hospitalizations in Portugal. Several strategies were applied to select the best count fit model that includes the Poisson regression model, zero-inflated Poisson, the negative binomial regression model, and zero-inflated negative binomial regression model. A random hospital effects term has been incorporated into the negative binomial model to examine the dependence between observations within the same hospital. A multivariable analysis has been performed to assess the effect of covariates on length of stay. Results The median length of stay in our study was 11 days (interquartile range: 6–22). Statistical comparisons among the count models revealed that the random-effects negative binomial models provided the best fit with observed data. Admissions among males or admissions associated with TB infection, pneumocystis, cytomegalovirus, candidiasis, toxoplasmosis, or mycobacterium disease exhibit a highly significant increase in length of stay. Perfect trends were observed in which a higher number of diagnoses or procedures lead to significantly higher length of stay. The random-effects term included in our model and refers to unexplained factors specific to each hospital revealed obvious differences in quality among the hospitals included in our study. Conclusions This study provides a comprehensive approach to address unique problems associated with the prediction of length of stay among HIV patients in Portugal.
publishDate 2021
dc.date.none.fl_str_mv 2021
2021-01-01T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://hdl.handle.net/10216/149516
url https://hdl.handle.net/10216/149516
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 1472-6963
10.1186/s12913-021-06389-1
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv BMC
publisher.none.fl_str_mv BMC
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799135906950545408