Infrared Irradiation Drying Impact on Bee Pollen: Case Study on the Phenolic Composition of Eucalyptus globulus Labill and Salix atrocinerea Brot. Pollens

Detalhes bibliográficos
Autor(a) principal: Campos, Maria G.
Data de Publicação: 2021
Outros Autores: Frigerio, Christian, Bobiş, Otilia, Urcan, Adriana C., Gomes, Nelson G. M.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10316/100778
https://doi.org/10.3390/pr9050890
Resumo: Bee pollen is commonly reputed as a rich source of nutrients, both for bees and humans. Its composition is well balanced and can be taken as a stand-alone food or as supplement, including for the elderly owing its low caloric value. However, storage conditions frequently lead to product degradation, namely due to the high moisture content that enable the proliferation of molds and bacteria. Herein, an infrared (IR)-based technology is proposed as a mean to determine moisture content, setting also a new scalable approach for the development of a drying technology to be used for bee pollen processing, which can be carried out in a short time, without impacting the phenolic and flavonoid content and associated bioactive effects. Proof-of-concept was attained with an IR moisture analyzer, bee pollen samples from Eucalyptus globulus Labill and Salix atrocinerea Brot. being selected as models. Impact of the IR radiation towards the phenolic and flavonoid profiles was screened by HPLC/DAD profiling and radical scavenging ability by the DPPH assay. The IR-based approach shows good reproducibility while simultaneously reducing drying time and energy consumption, thus implying a low environmental impact and being suitable for industrial scale-up once no degradation has been found to occur during the radiation process.Bee pollen is commonly reputed as a rich source of nutrients, both for bees and humans. Its composition is well balanced and can be taken as a stand-alone food or as supplement, including for the elderly owing its low caloric value. However, storage conditions frequently lead to product degradation, namely due to the high moisture content that enable the proliferation of molds and bacteria. Herein, an infrared (IR)-based technology is proposed as a mean to determine moisture content, setting also a new scalable approach for the development of a drying technology to be used for bee pollen processing, which can be carried out in a short time, without impacting the phenolic and flavonoid content and associated bioactive effects. Proof-of-concept was attained with an IR moisture analyzer, bee pollen samples from Eucalyptus globulus Labill and Salix atrocinerea Brot. being selected as models. Impact of the IR radiation towards the phenolic and flavonoid profiles was screened by HPLC/DAD profiling and radical scavenging ability by the DPPH assay. The IR-based approach shows good reproducibility while simultaneously reducing drying time and energy consumption, thus implying a low environmental impact and being suitable for industrial scale-up once no degradation has been found to occur during the radiation process.
id RCAP_27c8b986b24dec569ee47be205814e52
oai_identifier_str oai:estudogeral.uc.pt:10316/100778
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Infrared Irradiation Drying Impact on Bee Pollen: Case Study on the Phenolic Composition of Eucalyptus globulus Labill and Salix atrocinerea Brot. Pollensbee pollencinnamic acid derivativesfood processingkaempferol glycosidesluteolinquercetin glycosidestricetinBee pollen is commonly reputed as a rich source of nutrients, both for bees and humans. Its composition is well balanced and can be taken as a stand-alone food or as supplement, including for the elderly owing its low caloric value. However, storage conditions frequently lead to product degradation, namely due to the high moisture content that enable the proliferation of molds and bacteria. Herein, an infrared (IR)-based technology is proposed as a mean to determine moisture content, setting also a new scalable approach for the development of a drying technology to be used for bee pollen processing, which can be carried out in a short time, without impacting the phenolic and flavonoid content and associated bioactive effects. Proof-of-concept was attained with an IR moisture analyzer, bee pollen samples from Eucalyptus globulus Labill and Salix atrocinerea Brot. being selected as models. Impact of the IR radiation towards the phenolic and flavonoid profiles was screened by HPLC/DAD profiling and radical scavenging ability by the DPPH assay. The IR-based approach shows good reproducibility while simultaneously reducing drying time and energy consumption, thus implying a low environmental impact and being suitable for industrial scale-up once no degradation has been found to occur during the radiation process.Bee pollen is commonly reputed as a rich source of nutrients, both for bees and humans. Its composition is well balanced and can be taken as a stand-alone food or as supplement, including for the elderly owing its low caloric value. However, storage conditions frequently lead to product degradation, namely due to the high moisture content that enable the proliferation of molds and bacteria. Herein, an infrared (IR)-based technology is proposed as a mean to determine moisture content, setting also a new scalable approach for the development of a drying technology to be used for bee pollen processing, which can be carried out in a short time, without impacting the phenolic and flavonoid content and associated bioactive effects. Proof-of-concept was attained with an IR moisture analyzer, bee pollen samples from Eucalyptus globulus Labill and Salix atrocinerea Brot. being selected as models. Impact of the IR radiation towards the phenolic and flavonoid profiles was screened by HPLC/DAD profiling and radical scavenging ability by the DPPH assay. The IR-based approach shows good reproducibility while simultaneously reducing drying time and energy consumption, thus implying a low environmental impact and being suitable for industrial scale-up once no degradation has been found to occur during the radiation process.2021info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://hdl.handle.net/10316/100778http://hdl.handle.net/10316/100778https://doi.org/10.3390/pr9050890eng2227-9717Campos, Maria G.Frigerio, ChristianBobiş, OtiliaUrcan, Adriana C.Gomes, Nelson G. M.info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2022-07-11T20:31:28Zoai:estudogeral.uc.pt:10316/100778Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T21:18:05.589026Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Infrared Irradiation Drying Impact on Bee Pollen: Case Study on the Phenolic Composition of Eucalyptus globulus Labill and Salix atrocinerea Brot. Pollens
title Infrared Irradiation Drying Impact on Bee Pollen: Case Study on the Phenolic Composition of Eucalyptus globulus Labill and Salix atrocinerea Brot. Pollens
spellingShingle Infrared Irradiation Drying Impact on Bee Pollen: Case Study on the Phenolic Composition of Eucalyptus globulus Labill and Salix atrocinerea Brot. Pollens
Campos, Maria G.
bee pollen
cinnamic acid derivatives
food processing
kaempferol glycosides
luteolin
quercetin glycosides
tricetin
title_short Infrared Irradiation Drying Impact on Bee Pollen: Case Study on the Phenolic Composition of Eucalyptus globulus Labill and Salix atrocinerea Brot. Pollens
title_full Infrared Irradiation Drying Impact on Bee Pollen: Case Study on the Phenolic Composition of Eucalyptus globulus Labill and Salix atrocinerea Brot. Pollens
title_fullStr Infrared Irradiation Drying Impact on Bee Pollen: Case Study on the Phenolic Composition of Eucalyptus globulus Labill and Salix atrocinerea Brot. Pollens
title_full_unstemmed Infrared Irradiation Drying Impact on Bee Pollen: Case Study on the Phenolic Composition of Eucalyptus globulus Labill and Salix atrocinerea Brot. Pollens
title_sort Infrared Irradiation Drying Impact on Bee Pollen: Case Study on the Phenolic Composition of Eucalyptus globulus Labill and Salix atrocinerea Brot. Pollens
author Campos, Maria G.
author_facet Campos, Maria G.
Frigerio, Christian
Bobiş, Otilia
Urcan, Adriana C.
Gomes, Nelson G. M.
author_role author
author2 Frigerio, Christian
Bobiş, Otilia
Urcan, Adriana C.
Gomes, Nelson G. M.
author2_role author
author
author
author
dc.contributor.author.fl_str_mv Campos, Maria G.
Frigerio, Christian
Bobiş, Otilia
Urcan, Adriana C.
Gomes, Nelson G. M.
dc.subject.por.fl_str_mv bee pollen
cinnamic acid derivatives
food processing
kaempferol glycosides
luteolin
quercetin glycosides
tricetin
topic bee pollen
cinnamic acid derivatives
food processing
kaempferol glycosides
luteolin
quercetin glycosides
tricetin
description Bee pollen is commonly reputed as a rich source of nutrients, both for bees and humans. Its composition is well balanced and can be taken as a stand-alone food or as supplement, including for the elderly owing its low caloric value. However, storage conditions frequently lead to product degradation, namely due to the high moisture content that enable the proliferation of molds and bacteria. Herein, an infrared (IR)-based technology is proposed as a mean to determine moisture content, setting also a new scalable approach for the development of a drying technology to be used for bee pollen processing, which can be carried out in a short time, without impacting the phenolic and flavonoid content and associated bioactive effects. Proof-of-concept was attained with an IR moisture analyzer, bee pollen samples from Eucalyptus globulus Labill and Salix atrocinerea Brot. being selected as models. Impact of the IR radiation towards the phenolic and flavonoid profiles was screened by HPLC/DAD profiling and radical scavenging ability by the DPPH assay. The IR-based approach shows good reproducibility while simultaneously reducing drying time and energy consumption, thus implying a low environmental impact and being suitable for industrial scale-up once no degradation has been found to occur during the radiation process.Bee pollen is commonly reputed as a rich source of nutrients, both for bees and humans. Its composition is well balanced and can be taken as a stand-alone food or as supplement, including for the elderly owing its low caloric value. However, storage conditions frequently lead to product degradation, namely due to the high moisture content that enable the proliferation of molds and bacteria. Herein, an infrared (IR)-based technology is proposed as a mean to determine moisture content, setting also a new scalable approach for the development of a drying technology to be used for bee pollen processing, which can be carried out in a short time, without impacting the phenolic and flavonoid content and associated bioactive effects. Proof-of-concept was attained with an IR moisture analyzer, bee pollen samples from Eucalyptus globulus Labill and Salix atrocinerea Brot. being selected as models. Impact of the IR radiation towards the phenolic and flavonoid profiles was screened by HPLC/DAD profiling and radical scavenging ability by the DPPH assay. The IR-based approach shows good reproducibility while simultaneously reducing drying time and energy consumption, thus implying a low environmental impact and being suitable for industrial scale-up once no degradation has been found to occur during the radiation process.
publishDate 2021
dc.date.none.fl_str_mv 2021
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10316/100778
http://hdl.handle.net/10316/100778
https://doi.org/10.3390/pr9050890
url http://hdl.handle.net/10316/100778
https://doi.org/10.3390/pr9050890
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 2227-9717
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799134076245901312