Wavelet-Based Cancer Drug Recommender System
Autor(a) principal: | |
---|---|
Data de Publicação: | 2020 |
Tipo de documento: | Dissertação |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10400.26/34491 |
Resumo: | A natureza molecular do cancro serve de base para estudos sistemáticos de genomas cancerígenos, fornecendo valiosos insights e permitindo o desenvolvimento de tratamentos clínicos. Acima de tudo, estes estudos estão a impulsionar o uso clínico de informação genómica na escolha de tratamentos, de outro modo não expectáveis, em pacientes com diversos tipos de cancro, possibilitando a medicina de precisão. Com isso em mente, neste projeto combinamos técnicas de processamento de imagem, para aprimoramento de dados, e sistemas de recomendação para propor um ranking personalizado de drogas anticancerígenas. O sistema é implementado em Python e testado usando uma base de dados que contém registos de sensibilidade a drogas, com mais de 310.000 IC50 que, por sua vez, descrevem a resposta de mais de 300 drogas anticancerígenas em 987 linhas celulares cancerígenas. Após várias tarefas de pré-processamento, são realizadas duas experiências. A primeira experiência usa as imagens originais de microarrays de DNA e a segunda usa as mesmas imagens, mas submetidas a uma transformada wavelet. As experiências confirmam que as imagens de microarrays de DNA submetidas a transformadas wavelet melhoram o desempenho do sistema de recomendação, otimizando a pesquisa de linhas celulares cancerígenas com perfil semelhante ao da nova linha celular. Além disso, concluímos que as imagens de microarrays de DNA com transformadas de wavelet apropriadas, não apenas fornecem informações mais ricas para a pesquisa de utilizadores similares, mas também comprimem essas imagens com eficiência, otimizando os recursos computacionais. Tanto quanto é do nosso conhecimento, este projeto é inovador no que diz respeito ao uso de imagens de microarrays de DNA submetidas a transformadas wavelet, para perfilar linhas celulares num sistema de recomendação personalizado de drogas anticancerígenas. |
id |
RCAP_280e601a06c84b129a1efd6a11da9f5d |
---|---|
oai_identifier_str |
oai:comum.rcaap.pt:10400.26/34491 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Wavelet-Based Cancer Drug Recommender SystemSistema de recomendaçãoTransformada waveletGenoma cancerígenoCancroLinha celularADNGoogle colaboratoryPythonA natureza molecular do cancro serve de base para estudos sistemáticos de genomas cancerígenos, fornecendo valiosos insights e permitindo o desenvolvimento de tratamentos clínicos. Acima de tudo, estes estudos estão a impulsionar o uso clínico de informação genómica na escolha de tratamentos, de outro modo não expectáveis, em pacientes com diversos tipos de cancro, possibilitando a medicina de precisão. Com isso em mente, neste projeto combinamos técnicas de processamento de imagem, para aprimoramento de dados, e sistemas de recomendação para propor um ranking personalizado de drogas anticancerígenas. O sistema é implementado em Python e testado usando uma base de dados que contém registos de sensibilidade a drogas, com mais de 310.000 IC50 que, por sua vez, descrevem a resposta de mais de 300 drogas anticancerígenas em 987 linhas celulares cancerígenas. Após várias tarefas de pré-processamento, são realizadas duas experiências. A primeira experiência usa as imagens originais de microarrays de DNA e a segunda usa as mesmas imagens, mas submetidas a uma transformada wavelet. As experiências confirmam que as imagens de microarrays de DNA submetidas a transformadas wavelet melhoram o desempenho do sistema de recomendação, otimizando a pesquisa de linhas celulares cancerígenas com perfil semelhante ao da nova linha celular. Além disso, concluímos que as imagens de microarrays de DNA com transformadas de wavelet apropriadas, não apenas fornecem informações mais ricas para a pesquisa de utilizadores similares, mas também comprimem essas imagens com eficiência, otimizando os recursos computacionais. Tanto quanto é do nosso conhecimento, este projeto é inovador no que diz respeito ao uso de imagens de microarrays de DNA submetidas a transformadas wavelet, para perfilar linhas celulares num sistema de recomendação personalizado de drogas anticancerígenas.Belfo, Fernando Paulo dos Santos RodriguesSilva, Alexandre Miguel Fernandes Gomes daRepositório ComumBrandão, Liliana Carina Pereira2020-12-30T15:28:03Z2020-01-01T00:00:00Z2020-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10400.26/34491202571289enginfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2022-09-05T15:41:13Zoai:comum.rcaap.pt:10400.26/34491Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T15:16:59.744870Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Wavelet-Based Cancer Drug Recommender System |
title |
Wavelet-Based Cancer Drug Recommender System |
spellingShingle |
Wavelet-Based Cancer Drug Recommender System Brandão, Liliana Carina Pereira Sistema de recomendação Transformada wavelet Genoma cancerígeno Cancro Linha celular ADN Google colaboratory Python |
title_short |
Wavelet-Based Cancer Drug Recommender System |
title_full |
Wavelet-Based Cancer Drug Recommender System |
title_fullStr |
Wavelet-Based Cancer Drug Recommender System |
title_full_unstemmed |
Wavelet-Based Cancer Drug Recommender System |
title_sort |
Wavelet-Based Cancer Drug Recommender System |
author |
Brandão, Liliana Carina Pereira |
author_facet |
Brandão, Liliana Carina Pereira |
author_role |
author |
dc.contributor.none.fl_str_mv |
Belfo, Fernando Paulo dos Santos Rodrigues Silva, Alexandre Miguel Fernandes Gomes da Repositório Comum |
dc.contributor.author.fl_str_mv |
Brandão, Liliana Carina Pereira |
dc.subject.por.fl_str_mv |
Sistema de recomendação Transformada wavelet Genoma cancerígeno Cancro Linha celular ADN Google colaboratory Python |
topic |
Sistema de recomendação Transformada wavelet Genoma cancerígeno Cancro Linha celular ADN Google colaboratory Python |
description |
A natureza molecular do cancro serve de base para estudos sistemáticos de genomas cancerígenos, fornecendo valiosos insights e permitindo o desenvolvimento de tratamentos clínicos. Acima de tudo, estes estudos estão a impulsionar o uso clínico de informação genómica na escolha de tratamentos, de outro modo não expectáveis, em pacientes com diversos tipos de cancro, possibilitando a medicina de precisão. Com isso em mente, neste projeto combinamos técnicas de processamento de imagem, para aprimoramento de dados, e sistemas de recomendação para propor um ranking personalizado de drogas anticancerígenas. O sistema é implementado em Python e testado usando uma base de dados que contém registos de sensibilidade a drogas, com mais de 310.000 IC50 que, por sua vez, descrevem a resposta de mais de 300 drogas anticancerígenas em 987 linhas celulares cancerígenas. Após várias tarefas de pré-processamento, são realizadas duas experiências. A primeira experiência usa as imagens originais de microarrays de DNA e a segunda usa as mesmas imagens, mas submetidas a uma transformada wavelet. As experiências confirmam que as imagens de microarrays de DNA submetidas a transformadas wavelet melhoram o desempenho do sistema de recomendação, otimizando a pesquisa de linhas celulares cancerígenas com perfil semelhante ao da nova linha celular. Além disso, concluímos que as imagens de microarrays de DNA com transformadas de wavelet apropriadas, não apenas fornecem informações mais ricas para a pesquisa de utilizadores similares, mas também comprimem essas imagens com eficiência, otimizando os recursos computacionais. Tanto quanto é do nosso conhecimento, este projeto é inovador no que diz respeito ao uso de imagens de microarrays de DNA submetidas a transformadas wavelet, para perfilar linhas celulares num sistema de recomendação personalizado de drogas anticancerígenas. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-12-30T15:28:03Z 2020-01-01T00:00:00Z 2020-01-01T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10400.26/34491 202571289 |
url |
http://hdl.handle.net/10400.26/34491 |
identifier_str_mv |
202571289 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799130032882319360 |