Wavelet-Based Cancer Drug Recommender System

Detalhes bibliográficos
Autor(a) principal: Brandão, Liliana Carina Pereira
Data de Publicação: 2020
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10400.26/34491
Resumo: A natureza molecular do cancro serve de base para estudos sistemáticos de genomas cancerígenos, fornecendo valiosos insights e permitindo o desenvolvimento de tratamentos clínicos. Acima de tudo, estes estudos estão a impulsionar o uso clínico de informação genómica na escolha de tratamentos, de outro modo não expectáveis, em pacientes com diversos tipos de cancro, possibilitando a medicina de precisão. Com isso em mente, neste projeto combinamos técnicas de processamento de imagem, para aprimoramento de dados, e sistemas de recomendação para propor um ranking personalizado de drogas anticancerígenas. O sistema é implementado em Python e testado usando uma base de dados que contém registos de sensibilidade a drogas, com mais de 310.000 IC50 que, por sua vez, descrevem a resposta de mais de 300 drogas anticancerígenas em 987 linhas celulares cancerígenas. Após várias tarefas de pré-processamento, são realizadas duas experiências. A primeira experiência usa as imagens originais de microarrays de DNA e a segunda usa as mesmas imagens, mas submetidas a uma transformada wavelet. As experiências confirmam que as imagens de microarrays de DNA submetidas a transformadas wavelet melhoram o desempenho do sistema de recomendação, otimizando a pesquisa de linhas celulares cancerígenas com perfil semelhante ao da nova linha celular. Além disso, concluímos que as imagens de microarrays de DNA com transformadas de wavelet apropriadas, não apenas fornecem informações mais ricas para a pesquisa de utilizadores similares, mas também comprimem essas imagens com eficiência, otimizando os recursos computacionais. Tanto quanto é do nosso conhecimento, este projeto é inovador no que diz respeito ao uso de imagens de microarrays de DNA submetidas a transformadas wavelet, para perfilar linhas celulares num sistema de recomendação personalizado de drogas anticancerígenas.
id RCAP_280e601a06c84b129a1efd6a11da9f5d
oai_identifier_str oai:comum.rcaap.pt:10400.26/34491
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Wavelet-Based Cancer Drug Recommender SystemSistema de recomendaçãoTransformada waveletGenoma cancerígenoCancroLinha celularADNGoogle colaboratoryPythonA natureza molecular do cancro serve de base para estudos sistemáticos de genomas cancerígenos, fornecendo valiosos insights e permitindo o desenvolvimento de tratamentos clínicos. Acima de tudo, estes estudos estão a impulsionar o uso clínico de informação genómica na escolha de tratamentos, de outro modo não expectáveis, em pacientes com diversos tipos de cancro, possibilitando a medicina de precisão. Com isso em mente, neste projeto combinamos técnicas de processamento de imagem, para aprimoramento de dados, e sistemas de recomendação para propor um ranking personalizado de drogas anticancerígenas. O sistema é implementado em Python e testado usando uma base de dados que contém registos de sensibilidade a drogas, com mais de 310.000 IC50 que, por sua vez, descrevem a resposta de mais de 300 drogas anticancerígenas em 987 linhas celulares cancerígenas. Após várias tarefas de pré-processamento, são realizadas duas experiências. A primeira experiência usa as imagens originais de microarrays de DNA e a segunda usa as mesmas imagens, mas submetidas a uma transformada wavelet. As experiências confirmam que as imagens de microarrays de DNA submetidas a transformadas wavelet melhoram o desempenho do sistema de recomendação, otimizando a pesquisa de linhas celulares cancerígenas com perfil semelhante ao da nova linha celular. Além disso, concluímos que as imagens de microarrays de DNA com transformadas de wavelet apropriadas, não apenas fornecem informações mais ricas para a pesquisa de utilizadores similares, mas também comprimem essas imagens com eficiência, otimizando os recursos computacionais. Tanto quanto é do nosso conhecimento, este projeto é inovador no que diz respeito ao uso de imagens de microarrays de DNA submetidas a transformadas wavelet, para perfilar linhas celulares num sistema de recomendação personalizado de drogas anticancerígenas.Belfo, Fernando Paulo dos Santos RodriguesSilva, Alexandre Miguel Fernandes Gomes daRepositório ComumBrandão, Liliana Carina Pereira2020-12-30T15:28:03Z2020-01-01T00:00:00Z2020-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10400.26/34491202571289enginfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2022-09-05T15:41:13Zoai:comum.rcaap.pt:10400.26/34491Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T15:16:59.744870Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Wavelet-Based Cancer Drug Recommender System
title Wavelet-Based Cancer Drug Recommender System
spellingShingle Wavelet-Based Cancer Drug Recommender System
Brandão, Liliana Carina Pereira
Sistema de recomendação
Transformada wavelet
Genoma cancerígeno
Cancro
Linha celular
ADN
Google colaboratory
Python
title_short Wavelet-Based Cancer Drug Recommender System
title_full Wavelet-Based Cancer Drug Recommender System
title_fullStr Wavelet-Based Cancer Drug Recommender System
title_full_unstemmed Wavelet-Based Cancer Drug Recommender System
title_sort Wavelet-Based Cancer Drug Recommender System
author Brandão, Liliana Carina Pereira
author_facet Brandão, Liliana Carina Pereira
author_role author
dc.contributor.none.fl_str_mv Belfo, Fernando Paulo dos Santos Rodrigues
Silva, Alexandre Miguel Fernandes Gomes da
Repositório Comum
dc.contributor.author.fl_str_mv Brandão, Liliana Carina Pereira
dc.subject.por.fl_str_mv Sistema de recomendação
Transformada wavelet
Genoma cancerígeno
Cancro
Linha celular
ADN
Google colaboratory
Python
topic Sistema de recomendação
Transformada wavelet
Genoma cancerígeno
Cancro
Linha celular
ADN
Google colaboratory
Python
description A natureza molecular do cancro serve de base para estudos sistemáticos de genomas cancerígenos, fornecendo valiosos insights e permitindo o desenvolvimento de tratamentos clínicos. Acima de tudo, estes estudos estão a impulsionar o uso clínico de informação genómica na escolha de tratamentos, de outro modo não expectáveis, em pacientes com diversos tipos de cancro, possibilitando a medicina de precisão. Com isso em mente, neste projeto combinamos técnicas de processamento de imagem, para aprimoramento de dados, e sistemas de recomendação para propor um ranking personalizado de drogas anticancerígenas. O sistema é implementado em Python e testado usando uma base de dados que contém registos de sensibilidade a drogas, com mais de 310.000 IC50 que, por sua vez, descrevem a resposta de mais de 300 drogas anticancerígenas em 987 linhas celulares cancerígenas. Após várias tarefas de pré-processamento, são realizadas duas experiências. A primeira experiência usa as imagens originais de microarrays de DNA e a segunda usa as mesmas imagens, mas submetidas a uma transformada wavelet. As experiências confirmam que as imagens de microarrays de DNA submetidas a transformadas wavelet melhoram o desempenho do sistema de recomendação, otimizando a pesquisa de linhas celulares cancerígenas com perfil semelhante ao da nova linha celular. Além disso, concluímos que as imagens de microarrays de DNA com transformadas de wavelet apropriadas, não apenas fornecem informações mais ricas para a pesquisa de utilizadores similares, mas também comprimem essas imagens com eficiência, otimizando os recursos computacionais. Tanto quanto é do nosso conhecimento, este projeto é inovador no que diz respeito ao uso de imagens de microarrays de DNA submetidas a transformadas wavelet, para perfilar linhas celulares num sistema de recomendação personalizado de drogas anticancerígenas.
publishDate 2020
dc.date.none.fl_str_mv 2020-12-30T15:28:03Z
2020-01-01T00:00:00Z
2020-01-01T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10400.26/34491
202571289
url http://hdl.handle.net/10400.26/34491
identifier_str_mv 202571289
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799130032882319360