Modulation of oligodendrocyte differentiation and maturation by combined biochemical and mechanical cues
Autor(a) principal: | |
---|---|
Data de Publicação: | 2016 |
Outros Autores: | , , , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10316/108901 https://doi.org/10.1038/srep21563 |
Resumo: | Extracellular matrix (ECM) proteins play a key role during oligodendrogenesis. While fibronectin (FN) is involved in the maintenance and proliferation of oligodendrocyte progenitor cells (OPCs), merosin (MN) promotes differentiation into oligodendrocytes (OLs). Mechanical properties of the ECM also seem to affect OL differentiation, hence this study aimed to clarify the impact of combined biophysical and biochemical elements during oligodendrocyte differentiation and maturation using synthetic elastic polymeric ECM-like substrates. CG-4 cells presented OPC- or OL-like morphology in response to brain-compliant substrates functionalised with FN or MN, respectively. The expression of the differentiation and maturation markers myelin basic protein--MBP--and proteolipid protein--PLP--(respectively) by primary rat oligodendrocytes was enhanced in presence of MN, but only on brain-compliant conditions, considering the distribution (MBP) or amount (PLP) of the protein. It was also observed that maturation of OLs was attained earlier (by assessing PLP expression) by cells differentiated on MN-functionalised brain-compliant substrates than on standard culture conditions. Moreover, the combination of MN and substrate compliance enhanced the maturation and morphological complexity of OLs. Considering the distinct degrees of stiffness tested ranging within those of the central nervous system, our results indicate that 6.5 kPa is the most suitable rigidity for oligodendrocyte differentiation. |
id |
RCAP_282fe9d4a8d6d75897d8b3a5287f5b7a |
---|---|
oai_identifier_str |
oai:estudogeral.uc.pt:10316/108901 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Modulation of oligodendrocyte differentiation and maturation by combined biochemical and mechanical cuesAcrylic ResinsAnimalsBiomechanical PhenomenaCell LineExtracellular MatrixFibronectinsLamininMyelin Basic ProteinMyelin Proteolipid ProteinOligodendrogliaRatsCell DifferentiationExtracellular matrix (ECM) proteins play a key role during oligodendrogenesis. While fibronectin (FN) is involved in the maintenance and proliferation of oligodendrocyte progenitor cells (OPCs), merosin (MN) promotes differentiation into oligodendrocytes (OLs). Mechanical properties of the ECM also seem to affect OL differentiation, hence this study aimed to clarify the impact of combined biophysical and biochemical elements during oligodendrocyte differentiation and maturation using synthetic elastic polymeric ECM-like substrates. CG-4 cells presented OPC- or OL-like morphology in response to brain-compliant substrates functionalised with FN or MN, respectively. The expression of the differentiation and maturation markers myelin basic protein--MBP--and proteolipid protein--PLP--(respectively) by primary rat oligodendrocytes was enhanced in presence of MN, but only on brain-compliant conditions, considering the distribution (MBP) or amount (PLP) of the protein. It was also observed that maturation of OLs was attained earlier (by assessing PLP expression) by cells differentiated on MN-functionalised brain-compliant substrates than on standard culture conditions. Moreover, the combination of MN and substrate compliance enhanced the maturation and morphological complexity of OLs. Considering the distinct degrees of stiffness tested ranging within those of the central nervous system, our results indicate that 6.5 kPa is the most suitable rigidity for oligodendrocyte differentiation.Springer Nature2016-02-16info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://hdl.handle.net/10316/108901http://hdl.handle.net/10316/108901https://doi.org/10.1038/srep21563eng2045-2322Lourenço, TâniaPaes de Faria, JoanaBippes, Christian A.Maia, JoãoLopes-da-Silva, José A.Relvas, João B.Grãos, Márioinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-09-27T15:27:36Zoai:estudogeral.uc.pt:10316/108901Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T21:25:08.391752Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Modulation of oligodendrocyte differentiation and maturation by combined biochemical and mechanical cues |
title |
Modulation of oligodendrocyte differentiation and maturation by combined biochemical and mechanical cues |
spellingShingle |
Modulation of oligodendrocyte differentiation and maturation by combined biochemical and mechanical cues Lourenço, Tânia Acrylic Resins Animals Biomechanical Phenomena Cell Line Extracellular Matrix Fibronectins Laminin Myelin Basic Protein Myelin Proteolipid Protein Oligodendroglia Rats Cell Differentiation |
title_short |
Modulation of oligodendrocyte differentiation and maturation by combined biochemical and mechanical cues |
title_full |
Modulation of oligodendrocyte differentiation and maturation by combined biochemical and mechanical cues |
title_fullStr |
Modulation of oligodendrocyte differentiation and maturation by combined biochemical and mechanical cues |
title_full_unstemmed |
Modulation of oligodendrocyte differentiation and maturation by combined biochemical and mechanical cues |
title_sort |
Modulation of oligodendrocyte differentiation and maturation by combined biochemical and mechanical cues |
author |
Lourenço, Tânia |
author_facet |
Lourenço, Tânia Paes de Faria, Joana Bippes, Christian A. Maia, João Lopes-da-Silva, José A. Relvas, João B. Grãos, Mário |
author_role |
author |
author2 |
Paes de Faria, Joana Bippes, Christian A. Maia, João Lopes-da-Silva, José A. Relvas, João B. Grãos, Mário |
author2_role |
author author author author author author |
dc.contributor.author.fl_str_mv |
Lourenço, Tânia Paes de Faria, Joana Bippes, Christian A. Maia, João Lopes-da-Silva, José A. Relvas, João B. Grãos, Mário |
dc.subject.por.fl_str_mv |
Acrylic Resins Animals Biomechanical Phenomena Cell Line Extracellular Matrix Fibronectins Laminin Myelin Basic Protein Myelin Proteolipid Protein Oligodendroglia Rats Cell Differentiation |
topic |
Acrylic Resins Animals Biomechanical Phenomena Cell Line Extracellular Matrix Fibronectins Laminin Myelin Basic Protein Myelin Proteolipid Protein Oligodendroglia Rats Cell Differentiation |
description |
Extracellular matrix (ECM) proteins play a key role during oligodendrogenesis. While fibronectin (FN) is involved in the maintenance and proliferation of oligodendrocyte progenitor cells (OPCs), merosin (MN) promotes differentiation into oligodendrocytes (OLs). Mechanical properties of the ECM also seem to affect OL differentiation, hence this study aimed to clarify the impact of combined biophysical and biochemical elements during oligodendrocyte differentiation and maturation using synthetic elastic polymeric ECM-like substrates. CG-4 cells presented OPC- or OL-like morphology in response to brain-compliant substrates functionalised with FN or MN, respectively. The expression of the differentiation and maturation markers myelin basic protein--MBP--and proteolipid protein--PLP--(respectively) by primary rat oligodendrocytes was enhanced in presence of MN, but only on brain-compliant conditions, considering the distribution (MBP) or amount (PLP) of the protein. It was also observed that maturation of OLs was attained earlier (by assessing PLP expression) by cells differentiated on MN-functionalised brain-compliant substrates than on standard culture conditions. Moreover, the combination of MN and substrate compliance enhanced the maturation and morphological complexity of OLs. Considering the distinct degrees of stiffness tested ranging within those of the central nervous system, our results indicate that 6.5 kPa is the most suitable rigidity for oligodendrocyte differentiation. |
publishDate |
2016 |
dc.date.none.fl_str_mv |
2016-02-16 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10316/108901 http://hdl.handle.net/10316/108901 https://doi.org/10.1038/srep21563 |
url |
http://hdl.handle.net/10316/108901 https://doi.org/10.1038/srep21563 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
2045-2322 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Springer Nature |
publisher.none.fl_str_mv |
Springer Nature |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799134134437675008 |