Enzymatic inhibitory activity of hydroxycinnamates (HCs): in silico studies

Detalhes bibliográficos
Autor(a) principal: Serina, José João Caires
Data de Publicação: 2013
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10400.13/520
Resumo: Diabetes is a worldwide health issue that has been expanding mainly in developed countries. It is characterized by abnormal levels of blood sugar due to several factors. The most common are resistance to insulin and the production of defective insulin which exerts little or no effect. Its most common symptoms include tissue damage to several systems due to elevated levels of blood sugar. One of the key enzymes in hydrocarbon metabolism is α-glucosidase (EC 3.2.1.20). It catalyzes the breakdown of complex carbohydrates into their respective monomers (glucose) which allows them to be absorbed. In this work, caffeoyl quinic acids and their metabolites were analyzed as potential inhibitors for α-glucosidase. The search for the best inhibitor was conducted using molecular docking. The affinity of each compound was compared to the inhibitor present in the crystal structure of the protein. As no inhibitor with a similar affinity was´found, a new approach was used, in situ drug design. It was not possible to achieve an inhibitor capable of competing with the one present in the crystal structure of the enzyme, which is also its current commercial inhibitor. It is possible to draw some conclusions as to which functional groups interact best with certain residues of the active site. This work was divided into three main sections. The first section, Diabetes, serves as an introduction to what is Diabetes, its symptoms and/or side effects and how caffeoyl quinic acids could be used as a treatment. The second section, Caffeoylquinic acids and their metabolites as inhibitors for Alfa-glucosidase, corresponds to the search through molecular docking of caffeoyl quinic acids as inhibitors for α-glucosidase and what was possible to draw from this search. The last section, In situ design of an inhibitor for α-glucosidase (EC 3.2.1.20), corresponds to the in situ drug design study and what it achieved. The representation of each of the molecules used as a ligand can be found in the Annexes.
id RCAP_2860fdfe39fafeb9f766156c58cb7cd4
oai_identifier_str oai:digituma.uma.pt:10400.13/520
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Enzymatic inhibitory activity of hydroxycinnamates (HCs): in silico studiesDiabetesα-glucosidaseCaffeoyl quinic acidMolecular dockingInhibitorIn situ drug designBioquímica Aplicada.Centro de Ciências Exatas e da EngenhariaDiabetes is a worldwide health issue that has been expanding mainly in developed countries. It is characterized by abnormal levels of blood sugar due to several factors. The most common are resistance to insulin and the production of defective insulin which exerts little or no effect. Its most common symptoms include tissue damage to several systems due to elevated levels of blood sugar. One of the key enzymes in hydrocarbon metabolism is α-glucosidase (EC 3.2.1.20). It catalyzes the breakdown of complex carbohydrates into their respective monomers (glucose) which allows them to be absorbed. In this work, caffeoyl quinic acids and their metabolites were analyzed as potential inhibitors for α-glucosidase. The search for the best inhibitor was conducted using molecular docking. The affinity of each compound was compared to the inhibitor present in the crystal structure of the protein. As no inhibitor with a similar affinity was´found, a new approach was used, in situ drug design. It was not possible to achieve an inhibitor capable of competing with the one present in the crystal structure of the enzyme, which is also its current commercial inhibitor. It is possible to draw some conclusions as to which functional groups interact best with certain residues of the active site. This work was divided into three main sections. The first section, Diabetes, serves as an introduction to what is Diabetes, its symptoms and/or side effects and how caffeoyl quinic acids could be used as a treatment. The second section, Caffeoylquinic acids and their metabolites as inhibitors for Alfa-glucosidase, corresponds to the search through molecular docking of caffeoyl quinic acids as inhibitors for α-glucosidase and what was possible to draw from this search. The last section, In situ design of an inhibitor for α-glucosidase (EC 3.2.1.20), corresponds to the in situ drug design study and what it achieved. The representation of each of the molecules used as a ligand can be found in the Annexes.Universidade da MadeiraCastilho, Paula Cristina Machado FerreiraFernandes, Miguel Xavier Jesus JosefatDigitUMaSerina, José João Caires2014-01-13T15:07:36Z2013-072013-07-01T00:00:00Z2013-07-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10400.13/520enginfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2022-09-05T12:53:11Zoai:digituma.uma.pt:10400.13/520Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T15:03:13.883084Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Enzymatic inhibitory activity of hydroxycinnamates (HCs): in silico studies
title Enzymatic inhibitory activity of hydroxycinnamates (HCs): in silico studies
spellingShingle Enzymatic inhibitory activity of hydroxycinnamates (HCs): in silico studies
Serina, José João Caires
Diabetes
α-glucosidase
Caffeoyl quinic acid
Molecular docking
Inhibitor
In situ drug design
Bioquímica Aplicada
.
Centro de Ciências Exatas e da Engenharia
title_short Enzymatic inhibitory activity of hydroxycinnamates (HCs): in silico studies
title_full Enzymatic inhibitory activity of hydroxycinnamates (HCs): in silico studies
title_fullStr Enzymatic inhibitory activity of hydroxycinnamates (HCs): in silico studies
title_full_unstemmed Enzymatic inhibitory activity of hydroxycinnamates (HCs): in silico studies
title_sort Enzymatic inhibitory activity of hydroxycinnamates (HCs): in silico studies
author Serina, José João Caires
author_facet Serina, José João Caires
author_role author
dc.contributor.none.fl_str_mv Castilho, Paula Cristina Machado Ferreira
Fernandes, Miguel Xavier Jesus Josefat
DigitUMa
dc.contributor.author.fl_str_mv Serina, José João Caires
dc.subject.por.fl_str_mv Diabetes
α-glucosidase
Caffeoyl quinic acid
Molecular docking
Inhibitor
In situ drug design
Bioquímica Aplicada
.
Centro de Ciências Exatas e da Engenharia
topic Diabetes
α-glucosidase
Caffeoyl quinic acid
Molecular docking
Inhibitor
In situ drug design
Bioquímica Aplicada
.
Centro de Ciências Exatas e da Engenharia
description Diabetes is a worldwide health issue that has been expanding mainly in developed countries. It is characterized by abnormal levels of blood sugar due to several factors. The most common are resistance to insulin and the production of defective insulin which exerts little or no effect. Its most common symptoms include tissue damage to several systems due to elevated levels of blood sugar. One of the key enzymes in hydrocarbon metabolism is α-glucosidase (EC 3.2.1.20). It catalyzes the breakdown of complex carbohydrates into their respective monomers (glucose) which allows them to be absorbed. In this work, caffeoyl quinic acids and their metabolites were analyzed as potential inhibitors for α-glucosidase. The search for the best inhibitor was conducted using molecular docking. The affinity of each compound was compared to the inhibitor present in the crystal structure of the protein. As no inhibitor with a similar affinity was´found, a new approach was used, in situ drug design. It was not possible to achieve an inhibitor capable of competing with the one present in the crystal structure of the enzyme, which is also its current commercial inhibitor. It is possible to draw some conclusions as to which functional groups interact best with certain residues of the active site. This work was divided into three main sections. The first section, Diabetes, serves as an introduction to what is Diabetes, its symptoms and/or side effects and how caffeoyl quinic acids could be used as a treatment. The second section, Caffeoylquinic acids and their metabolites as inhibitors for Alfa-glucosidase, corresponds to the search through molecular docking of caffeoyl quinic acids as inhibitors for α-glucosidase and what was possible to draw from this search. The last section, In situ design of an inhibitor for α-glucosidase (EC 3.2.1.20), corresponds to the in situ drug design study and what it achieved. The representation of each of the molecules used as a ligand can be found in the Annexes.
publishDate 2013
dc.date.none.fl_str_mv 2013-07
2013-07-01T00:00:00Z
2013-07-01T00:00:00Z
2014-01-13T15:07:36Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10400.13/520
url http://hdl.handle.net/10400.13/520
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799129901827096576