Mining users mobility at public transportation
Autor(a) principal: | |
---|---|
Data de Publicação: | 2017 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10071/15901 |
Resumo: | In this research work we propose a new approach to estimate the number of passengers in a public transportation and determinate the users’ route path based on a passive approach without user intervention. The method is based on the probe requests of users mobile device through the collected data in wireless access point. This data is manipulated to extract the information about the numbers of users with mobile devices and track their route path and time. This data can be manipulated to extract useful knowledge related with users’ habits at public transportation and extract user mobility patterns. |
id |
RCAP_288fe6fd0bc1fe4517e7a82cb399b87f |
---|---|
oai_identifier_str |
oai:repositorio.iscte-iul.pt:10071/15901 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Mining users mobility at public transportationWi-fiMobile deviceTrackingGPSArtificial intelligentKnowledgeIn this research work we propose a new approach to estimate the number of passengers in a public transportation and determinate the users’ route path based on a passive approach without user intervention. The method is based on the probe requests of users mobile device through the collected data in wireless access point. This data is manipulated to extract the information about the numbers of users with mobile devices and track their route path and time. This data can be manipulated to extract useful knowledge related with users’ habits at public transportation and extract user mobility patterns.Asociacion Espanola de Inteligencia Artificial2018-05-24T15:36:53Z2017-01-01T00:00:00Z20172019-04-05T15:03:05Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10071/15901eng1137-360110.4114/intartif.vol20iss59pp32-41Baeta, N.Fernandes, A.Ferreira, J.info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-07-07T03:31:29Zoai:repositorio.iscte-iul.pt:10071/15901Portal AgregadorONGhttps://www.rcaap.pt/oai/openairemluisa.alvim@gmail.comopendoar:71602024-07-07T03:31:29Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Mining users mobility at public transportation |
title |
Mining users mobility at public transportation |
spellingShingle |
Mining users mobility at public transportation Baeta, N. Wi-fi Mobile device Tracking GPS Artificial intelligent Knowledge |
title_short |
Mining users mobility at public transportation |
title_full |
Mining users mobility at public transportation |
title_fullStr |
Mining users mobility at public transportation |
title_full_unstemmed |
Mining users mobility at public transportation |
title_sort |
Mining users mobility at public transportation |
author |
Baeta, N. |
author_facet |
Baeta, N. Fernandes, A. Ferreira, J. |
author_role |
author |
author2 |
Fernandes, A. Ferreira, J. |
author2_role |
author author |
dc.contributor.author.fl_str_mv |
Baeta, N. Fernandes, A. Ferreira, J. |
dc.subject.por.fl_str_mv |
Wi-fi Mobile device Tracking GPS Artificial intelligent Knowledge |
topic |
Wi-fi Mobile device Tracking GPS Artificial intelligent Knowledge |
description |
In this research work we propose a new approach to estimate the number of passengers in a public transportation and determinate the users’ route path based on a passive approach without user intervention. The method is based on the probe requests of users mobile device through the collected data in wireless access point. This data is manipulated to extract the information about the numbers of users with mobile devices and track their route path and time. This data can be manipulated to extract useful knowledge related with users’ habits at public transportation and extract user mobility patterns. |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017-01-01T00:00:00Z 2017 2018-05-24T15:36:53Z 2019-04-05T15:03:05Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10071/15901 |
url |
http://hdl.handle.net/10071/15901 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
1137-3601 10.4114/intartif.vol20iss59pp32-41 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Asociacion Espanola de Inteligencia Artificial |
publisher.none.fl_str_mv |
Asociacion Espanola de Inteligencia Artificial |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
mluisa.alvim@gmail.com |
_version_ |
1817546491298840576 |