Sinistros graves – Quantos e quanto
Autor(a) principal: | |
---|---|
Data de Publicação: | 2022 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | https://hdl.handle.net/1822/84533 |
Resumo: | Dissertação de mestrado em Estatística para Ciência de Dados |
id |
RCAP_28babd04fedabea34253fdb321658781 |
---|---|
oai_identifier_str |
oai:repositorium.sdum.uminho.pt:1822/84533 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Sinistros graves – Quantos e quantoExtreme events - How many and how muchTeoria de valores extremosMétodo POTAbordagem semi-paramétricaSinistrosGravesExtreme value theoryPOT methodSemi-parametric approachClaimsSevereCiências Naturais::MatemáticasDissertação de mestrado em Estatística para Ciência de DadosA necessidade de estudar e compreender os eventos extremos que surgem nas diversas áreas do quotidiano levou ao aparecimento da Teoria de Valores Extremos (EVT). O estudo de Tippett, Fisher e Gnedenko, concluiu que o comportamento do máximo de sucessões de variáveis aleatórias independente e identicamente distribuídas(i.i.d.) pode ser bem modelado por uma das três distribuições max-estáveis – Gumbel, Fréchet e Weibull. Mais tarde, von Mises e Jenkinson descobriram que essas distribuições podem ser definidas por uma única distribuição, a distribuição Generalizada de Valores Extremos, dependente somente do parâmetro intitulado por Índice de Valores Extremos (EVI), sendo o parâmetro mais importante de EVT, uma vez que este indica o seu tipo de cauda. A inferência estatística em valores extremos pode ser feita, por exemplo, através da abordagem paramétrica e abordagem semi-paramétrica. No primeiro tipo assume-se que há um modelo paramétrico que se ajusta à amostra de observações i.i.d. Existem alguns métodos nesta metodologia, como por exemplo, o Método dos Máximo Anuais e o Método de POT (Peaks Over Threshold). No que toca à abordagem semi-paramétrica, esta supõe que a distribuição subjacente aos dados em estudos pertence a algum domínio max-estável, no entanto não é proposto nenhum modelo paramétrico. O propósito desta abordagem é a estimação do EVI, que será realizada ao selecionar as observações da amostra que se encontram acima de um determinado nível aleatório. Nesta dissertação será aplicada uma análise em valores extremos a uma amostra de sinistros graves da empresa seguradora. Serão usadas as duas metodologias mencionadas anteriormente, com o objetivo de descrever e prever o comportamento dos sinistros. Na abordagem paramétrica, serão aplicados métodos de máxima verosimilhança e dos momentos ponderados de probabilidade para a estimação pontual e o método profile log-likelihood para a estimação intervalar. Também serão estimados o nível de retorno para 500 sinistros e probabilidades de excedência de valores elevados.The need to study and understand extreme events that arise in various areas of daily life led to the emergence of Extreme Value Theory (EVT). The study by Tippett, Fisher and Gnedenko, concluded that the maximal behavior of sequences of independently and identically distributed (i.i.d.) random variables can be well modeled by one of three max-stable distributions – Gumbel, Fréchet and Weibull. Later, von Mises and Jenkinson discovered that these distributions can be defined by a single distribution, the Generalized Extreme Value distribution, dependent only on the parameter called the Extreme Value Index (EVI), which is the most important parameter of EVT, since it indicates its tail type. Statistical inference in extreme values can be done, for example, through the parametric approach and semi-parametric approach. In the first type it is assumed that there is a parametric model that fits the sample of i.i.d. observations. There are some methods in this methodology, for example, the Annual Maximum Method and the Peaks Over Threshold (POT) Method. As for the semi-parametric approach, it assumes that the underlying distribution of the data under study belongs to some max-stable domain, however no parametric model is proposed. The purpose of this approach is the estimation of the EVI, which will be performed by selecting the observations from the sample that lie above a certain random level. In this dissertation an extreme value analysis will be applied to a sample of severe insurance company claims. The two methodologies mentioned above will be used, with the aim of describing and predicting the claims behavior. In the parametric approach, maximum likelihood and probability weighted moments will be applied to point estimation and the profile log-likelihood method to interval estimation. The return level for 500 claims and high value exceedance probabilities will also be estimated.Ferreira, Marta SusanaFerreira, Luís Filipe Fonseca da CunhaUniversidade do MinhoSousa, Beatriz Marques de2022-12-152022-12-15T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttps://hdl.handle.net/1822/84533por203232739info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-05-11T06:29:07Zoai:repositorium.sdum.uminho.pt:1822/84533Portal AgregadorONGhttps://www.rcaap.pt/oai/openairemluisa.alvim@gmail.comopendoar:71602024-05-11T06:29:07Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Sinistros graves – Quantos e quanto Extreme events - How many and how much |
title |
Sinistros graves – Quantos e quanto |
spellingShingle |
Sinistros graves – Quantos e quanto Sousa, Beatriz Marques de Teoria de valores extremos Método POT Abordagem semi-paramétrica Sinistros Graves Extreme value theory POT method Semi-parametric approach Claims Severe Ciências Naturais::Matemáticas |
title_short |
Sinistros graves – Quantos e quanto |
title_full |
Sinistros graves – Quantos e quanto |
title_fullStr |
Sinistros graves – Quantos e quanto |
title_full_unstemmed |
Sinistros graves – Quantos e quanto |
title_sort |
Sinistros graves – Quantos e quanto |
author |
Sousa, Beatriz Marques de |
author_facet |
Sousa, Beatriz Marques de |
author_role |
author |
dc.contributor.none.fl_str_mv |
Ferreira, Marta Susana Ferreira, Luís Filipe Fonseca da Cunha Universidade do Minho |
dc.contributor.author.fl_str_mv |
Sousa, Beatriz Marques de |
dc.subject.por.fl_str_mv |
Teoria de valores extremos Método POT Abordagem semi-paramétrica Sinistros Graves Extreme value theory POT method Semi-parametric approach Claims Severe Ciências Naturais::Matemáticas |
topic |
Teoria de valores extremos Método POT Abordagem semi-paramétrica Sinistros Graves Extreme value theory POT method Semi-parametric approach Claims Severe Ciências Naturais::Matemáticas |
description |
Dissertação de mestrado em Estatística para Ciência de Dados |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-12-15 2022-12-15T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://hdl.handle.net/1822/84533 |
url |
https://hdl.handle.net/1822/84533 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
203232739 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
mluisa.alvim@gmail.com |
_version_ |
1817544987568504832 |