Finite volume simulations of particle‑laden viscoelastic fuid fows: application to hydraulic fracture processes

Detalhes bibliográficos
Autor(a) principal: Fernandes, C.
Data de Publicação: 2022
Outros Autores: Faroughi, S. A., Ribeiro, R., Isabel, A., McKinley, G. H.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: https://hdl.handle.net/1822/76504
Resumo: Accurately resolving the coupled momentum transfer between the liquid and solid phases of complex fluids is a fundamental problem in multiphase transport processes, such as hydraulic fracture operations. Specifically we need to characterize the dependence of the normalized average fluid–particle force ⟨F⟩ on the volume fraction of the dispersed solid phase and on the rheology of the complex fluid matrix, parameterized through the Weissenberg number Wi measuring the relative magnitude of elastic to viscous stresses in the fluid. Here we use direct numerical simulations (DNS) to study the creeping flow (Re≪1) of viscoelastic fluids through static random arrays of monodisperse spherical particles using a finite volume Navier–Stokes/Cauchy momentum solver. The numerical study consists of N=150 different systems, in which the normalized average fluid–particle force ⟨F⟩ is obtained as a function of the volume fraction ϕ (0<ϕ≤0.2) of the dispersed solid phase and the Weissenberg number Wi (0≤Wi≤4). From these predictions a closure law ⟨F(ϕ,Wi)⟩ for the drag force is derived for the quasi-linear Oldroyd-B viscoelastic fluid model (with fixed retardation ratio β=0.5) which is, on average, within 5.7% of the DNS results. In addition, a flow solver able to couple Eulerian and Lagrangian phases (in which the particulate phase is modeled by the discrete particle method (DPM)) is developed, which incorporates the viscoelastic nature of the continuum phase and the closed-form drag law. Two case studies were simulated using this solver, to assess the accuracy and robustness of the newly developed approach for handling particle-laden viscoelastic flow configurations with O(105−106) rigid spheres that are representative of hydraulic fracture operations. Three-dimensional settling processes in a Newtonian fluid and in a quasi-linear Oldroyd-B viscoelastic fluid are both investigated using a rectangular channel and an annular pipe domain. Good agreement is obtained for the particle distribution measured in a Newtonian fluid, when comparing numerical results with experimental data. For the cases in which the continuous fluid phase is viscoelastic we compute the evolution in the velocity fields and predicted particle distributions are presented at different elasticity numbers 0≤El≤30 (where El=Wi/Re) and for different suspension particle volume fractions.
id RCAP_28c1d82cbcb5bbc4ca50da2c580c1054
oai_identifier_str oai:repositorium.sdum.uminho.pt:1822/76504
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Finite volume simulations of particle‑laden viscoelastic fuid fows: application to hydraulic fracture processesRandom arrays of spheresDrag coefcientViscoelastic fuidsOldroyd-B modelEulerian–Lagrangian formulationDiscrete particle methodDrag coefficientViscoelastic fluidsEngenharia e Tecnologia::Engenharia MecânicaScience & TechnologyEnergias renováveis e acessíveisAccurately resolving the coupled momentum transfer between the liquid and solid phases of complex fluids is a fundamental problem in multiphase transport processes, such as hydraulic fracture operations. Specifically we need to characterize the dependence of the normalized average fluid–particle force ⟨F⟩ on the volume fraction of the dispersed solid phase and on the rheology of the complex fluid matrix, parameterized through the Weissenberg number Wi measuring the relative magnitude of elastic to viscous stresses in the fluid. Here we use direct numerical simulations (DNS) to study the creeping flow (Re≪1) of viscoelastic fluids through static random arrays of monodisperse spherical particles using a finite volume Navier–Stokes/Cauchy momentum solver. The numerical study consists of N=150 different systems, in which the normalized average fluid–particle force ⟨F⟩ is obtained as a function of the volume fraction ϕ (0<ϕ≤0.2) of the dispersed solid phase and the Weissenberg number Wi (0≤Wi≤4). From these predictions a closure law ⟨F(ϕ,Wi)⟩ for the drag force is derived for the quasi-linear Oldroyd-B viscoelastic fluid model (with fixed retardation ratio β=0.5) which is, on average, within 5.7% of the DNS results. In addition, a flow solver able to couple Eulerian and Lagrangian phases (in which the particulate phase is modeled by the discrete particle method (DPM)) is developed, which incorporates the viscoelastic nature of the continuum phase and the closed-form drag law. Two case studies were simulated using this solver, to assess the accuracy and robustness of the newly developed approach for handling particle-laden viscoelastic flow configurations with O(105−106) rigid spheres that are representative of hydraulic fracture operations. Three-dimensional settling processes in a Newtonian fluid and in a quasi-linear Oldroyd-B viscoelastic fluid are both investigated using a rectangular channel and an annular pipe domain. Good agreement is obtained for the particle distribution measured in a Newtonian fluid, when comparing numerical results with experimental data. For the cases in which the continuous fluid phase is viscoelastic we compute the evolution in the velocity fields and predicted particle distributions are presented at different elasticity numbers 0≤El≤30 (where El=Wi/Re) and for different suspension particle volume fractions.This work is funded by FEDER funds through the COMPETE 2020 Programme and National Funds through FCT (Portuguese Foundation for Science and Technology) under the projects UID-B/05256/2020, UID-P/05256/2020 and MIT-EXPL/TDI/0038/2019 - APROVA - Deep learning for particle-laden viscoelastic flow modelling (POCI-01-0145-FEDER-016665) under MIT Portugal program. The authors would like to acknowledge the University of Minho cluster under the project NORTE-07-0162-FEDER-000086 (URL: http://search6.di.uminho.pt), the Minho Advanced Computing Center (MACC) (URL: https:// macc.fccn.pt) under the project CPCA_A2_6052_2020, the Texas Advanced Computing Center (TACC) at The University of Texas at Austin (URL: http://www.tacc.utexas.edu), the Gompute HPC Cloud Platform (URL: https://www.gompute.com), and PRACE - Partnership for Advanced Computing in Europe under the project icei-prace-2020-0009, for providing HPC resources that have contributed to the research results reported within this paper.SpringerUniversidade do MinhoFernandes, C.Faroughi, S. A.Ribeiro, R.Isabel, A.McKinley, G. H.20222022-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttps://hdl.handle.net/1822/76504engFernandes, C., Faroughi, S.A., Ribeiro, R. et al. Finite volume simulations of particle-laden viscoelastic fluid flows: application to hydraulic fracture processes. Engineering with Computers (2022). https://doi.org/10.1007/s00366-022-01626-50177-06671435-566310.1007/s00366-022-01626-5https://link.springer.com/article/10.1007/s00366-022-01626-5info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-07-21T12:17:53Zoai:repositorium.sdum.uminho.pt:1822/76504Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T19:10:35.183352Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Finite volume simulations of particle‑laden viscoelastic fuid fows: application to hydraulic fracture processes
title Finite volume simulations of particle‑laden viscoelastic fuid fows: application to hydraulic fracture processes
spellingShingle Finite volume simulations of particle‑laden viscoelastic fuid fows: application to hydraulic fracture processes
Fernandes, C.
Random arrays of spheres
Drag coefcient
Viscoelastic fuids
Oldroyd-B model
Eulerian–Lagrangian formulation
Discrete particle method
Drag coefficient
Viscoelastic fluids
Engenharia e Tecnologia::Engenharia Mecânica
Science & Technology
Energias renováveis e acessíveis
title_short Finite volume simulations of particle‑laden viscoelastic fuid fows: application to hydraulic fracture processes
title_full Finite volume simulations of particle‑laden viscoelastic fuid fows: application to hydraulic fracture processes
title_fullStr Finite volume simulations of particle‑laden viscoelastic fuid fows: application to hydraulic fracture processes
title_full_unstemmed Finite volume simulations of particle‑laden viscoelastic fuid fows: application to hydraulic fracture processes
title_sort Finite volume simulations of particle‑laden viscoelastic fuid fows: application to hydraulic fracture processes
author Fernandes, C.
author_facet Fernandes, C.
Faroughi, S. A.
Ribeiro, R.
Isabel, A.
McKinley, G. H.
author_role author
author2 Faroughi, S. A.
Ribeiro, R.
Isabel, A.
McKinley, G. H.
author2_role author
author
author
author
dc.contributor.none.fl_str_mv Universidade do Minho
dc.contributor.author.fl_str_mv Fernandes, C.
Faroughi, S. A.
Ribeiro, R.
Isabel, A.
McKinley, G. H.
dc.subject.por.fl_str_mv Random arrays of spheres
Drag coefcient
Viscoelastic fuids
Oldroyd-B model
Eulerian–Lagrangian formulation
Discrete particle method
Drag coefficient
Viscoelastic fluids
Engenharia e Tecnologia::Engenharia Mecânica
Science & Technology
Energias renováveis e acessíveis
topic Random arrays of spheres
Drag coefcient
Viscoelastic fuids
Oldroyd-B model
Eulerian–Lagrangian formulation
Discrete particle method
Drag coefficient
Viscoelastic fluids
Engenharia e Tecnologia::Engenharia Mecânica
Science & Technology
Energias renováveis e acessíveis
description Accurately resolving the coupled momentum transfer between the liquid and solid phases of complex fluids is a fundamental problem in multiphase transport processes, such as hydraulic fracture operations. Specifically we need to characterize the dependence of the normalized average fluid–particle force ⟨F⟩ on the volume fraction of the dispersed solid phase and on the rheology of the complex fluid matrix, parameterized through the Weissenberg number Wi measuring the relative magnitude of elastic to viscous stresses in the fluid. Here we use direct numerical simulations (DNS) to study the creeping flow (Re≪1) of viscoelastic fluids through static random arrays of monodisperse spherical particles using a finite volume Navier–Stokes/Cauchy momentum solver. The numerical study consists of N=150 different systems, in which the normalized average fluid–particle force ⟨F⟩ is obtained as a function of the volume fraction ϕ (0<ϕ≤0.2) of the dispersed solid phase and the Weissenberg number Wi (0≤Wi≤4). From these predictions a closure law ⟨F(ϕ,Wi)⟩ for the drag force is derived for the quasi-linear Oldroyd-B viscoelastic fluid model (with fixed retardation ratio β=0.5) which is, on average, within 5.7% of the DNS results. In addition, a flow solver able to couple Eulerian and Lagrangian phases (in which the particulate phase is modeled by the discrete particle method (DPM)) is developed, which incorporates the viscoelastic nature of the continuum phase and the closed-form drag law. Two case studies were simulated using this solver, to assess the accuracy and robustness of the newly developed approach for handling particle-laden viscoelastic flow configurations with O(105−106) rigid spheres that are representative of hydraulic fracture operations. Three-dimensional settling processes in a Newtonian fluid and in a quasi-linear Oldroyd-B viscoelastic fluid are both investigated using a rectangular channel and an annular pipe domain. Good agreement is obtained for the particle distribution measured in a Newtonian fluid, when comparing numerical results with experimental data. For the cases in which the continuous fluid phase is viscoelastic we compute the evolution in the velocity fields and predicted particle distributions are presented at different elasticity numbers 0≤El≤30 (where El=Wi/Re) and for different suspension particle volume fractions.
publishDate 2022
dc.date.none.fl_str_mv 2022
2022-01-01T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://hdl.handle.net/1822/76504
url https://hdl.handle.net/1822/76504
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Fernandes, C., Faroughi, S.A., Ribeiro, R. et al. Finite volume simulations of particle-laden viscoelastic fluid flows: application to hydraulic fracture processes. Engineering with Computers (2022). https://doi.org/10.1007/s00366-022-01626-5
0177-0667
1435-5663
10.1007/s00366-022-01626-5
https://link.springer.com/article/10.1007/s00366-022-01626-5
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Springer
publisher.none.fl_str_mv Springer
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799132535913971712