Detecção de agrupamento temporal de doenças em culturas agrícolas
Autor(a) principal: | |
---|---|
Data de Publicação: | 2016 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://scielo.pt/scielo.php?script=sci_arttext&pid=S0871-018X2016000300011 |
Resumo: | Information about temporal dynamics of plant diseases is of paramount importance for appropriate technologies development for diseases management in production systems. The major interest when studying a temporal point pattern is to detect temporal clustering of events. There are some methods available for events cluster detection over time. The majority of these methods has been developed to detect temporal clustering inhuman diseases. The temporal patterns analysisfor plant diseases are not very well described in the literature. In this study, we aimed to propose new methods, based on both empirical distribution function and Monte Carlo simulation, for testing the null hypothesis that a temporal point pattern is purely random. These methods are compared to the time K-function for detecting temporal clustering for incidence of citrus sudden death disease in orange trees. All methodologies were found to show good performance for analyzing temporal point patterns and they led to the detection of temporal clustering of the citrus sudden death disease in an orange trees planting. |
id |
RCAP_28f05128892207619598d2c91e3efd3e |
---|---|
oai_identifier_str |
oai:scielo:S0871-018X2016000300011 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Detecção de agrupamento temporal de doenças em culturas agrícolasCitrus sinensiscounting processdisease spreadhomogeneous Poisson point processhypotheses testingInformation about temporal dynamics of plant diseases is of paramount importance for appropriate technologies development for diseases management in production systems. The major interest when studying a temporal point pattern is to detect temporal clustering of events. There are some methods available for events cluster detection over time. The majority of these methods has been developed to detect temporal clustering inhuman diseases. The temporal patterns analysisfor plant diseases are not very well described in the literature. In this study, we aimed to propose new methods, based on both empirical distribution function and Monte Carlo simulation, for testing the null hypothesis that a temporal point pattern is purely random. These methods are compared to the time K-function for detecting temporal clustering for incidence of citrus sudden death disease in orange trees. All methodologies were found to show good performance for analyzing temporal point patterns and they led to the detection of temporal clustering of the citrus sudden death disease in an orange trees planting.Sociedade de Ciências Agrárias de Portugal2016-09-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articletext/htmlhttp://scielo.pt/scielo.php?script=sci_arttext&pid=S0871-018X2016000300011Revista de Ciências Agrárias v.39 n.3 2016reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAPenghttp://scielo.pt/scielo.php?script=sci_arttext&pid=S0871-018X2016000300011Mateus,Ana Lúcia Souza SilvaScalon,João Domingosinfo:eu-repo/semantics/openAccess2024-02-06T17:02:13Zoai:scielo:S0871-018X2016000300011Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T02:17:23.216025Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Detecção de agrupamento temporal de doenças em culturas agrícolas |
title |
Detecção de agrupamento temporal de doenças em culturas agrícolas |
spellingShingle |
Detecção de agrupamento temporal de doenças em culturas agrícolas Mateus,Ana Lúcia Souza Silva Citrus sinensis counting process disease spread homogeneous Poisson point process hypotheses testing |
title_short |
Detecção de agrupamento temporal de doenças em culturas agrícolas |
title_full |
Detecção de agrupamento temporal de doenças em culturas agrícolas |
title_fullStr |
Detecção de agrupamento temporal de doenças em culturas agrícolas |
title_full_unstemmed |
Detecção de agrupamento temporal de doenças em culturas agrícolas |
title_sort |
Detecção de agrupamento temporal de doenças em culturas agrícolas |
author |
Mateus,Ana Lúcia Souza Silva |
author_facet |
Mateus,Ana Lúcia Souza Silva Scalon,João Domingos |
author_role |
author |
author2 |
Scalon,João Domingos |
author2_role |
author |
dc.contributor.author.fl_str_mv |
Mateus,Ana Lúcia Souza Silva Scalon,João Domingos |
dc.subject.por.fl_str_mv |
Citrus sinensis counting process disease spread homogeneous Poisson point process hypotheses testing |
topic |
Citrus sinensis counting process disease spread homogeneous Poisson point process hypotheses testing |
description |
Information about temporal dynamics of plant diseases is of paramount importance for appropriate technologies development for diseases management in production systems. The major interest when studying a temporal point pattern is to detect temporal clustering of events. There are some methods available for events cluster detection over time. The majority of these methods has been developed to detect temporal clustering inhuman diseases. The temporal patterns analysisfor plant diseases are not very well described in the literature. In this study, we aimed to propose new methods, based on both empirical distribution function and Monte Carlo simulation, for testing the null hypothesis that a temporal point pattern is purely random. These methods are compared to the time K-function for detecting temporal clustering for incidence of citrus sudden death disease in orange trees. All methodologies were found to show good performance for analyzing temporal point patterns and they led to the detection of temporal clustering of the citrus sudden death disease in an orange trees planting. |
publishDate |
2016 |
dc.date.none.fl_str_mv |
2016-09-01 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://scielo.pt/scielo.php?script=sci_arttext&pid=S0871-018X2016000300011 |
url |
http://scielo.pt/scielo.php?script=sci_arttext&pid=S0871-018X2016000300011 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
http://scielo.pt/scielo.php?script=sci_arttext&pid=S0871-018X2016000300011 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html |
dc.publisher.none.fl_str_mv |
Sociedade de Ciências Agrárias de Portugal |
publisher.none.fl_str_mv |
Sociedade de Ciências Agrárias de Portugal |
dc.source.none.fl_str_mv |
Revista de Ciências Agrárias v.39 n.3 2016 reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799137268068253696 |