Detecção de agrupamento temporal de doenças em culturas agrícolas

Detalhes bibliográficos
Autor(a) principal: Mateus,Ana Lúcia Souza Silva
Data de Publicação: 2016
Outros Autores: Scalon,João Domingos
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://scielo.pt/scielo.php?script=sci_arttext&pid=S0871-018X2016000300011
Resumo: Information about temporal dynamics of plant diseases is of paramount importance for appropriate technologies development for diseases management in production systems. The major interest when studying a temporal point pattern is to detect temporal clustering of events. There are some methods available for events cluster detection over time. The majority of these methods has been developed to detect temporal clustering inhuman diseases. The temporal patterns analysisfor plant diseases are not very well described in the literature. In this study, we aimed to propose new methods, based on both empirical distribution function and Monte Carlo simulation, for testing the null hypothesis that a temporal point pattern is purely random. These methods are compared to the time K-function for detecting temporal clustering for incidence of citrus sudden death disease in orange trees. All methodologies were found to show good performance for analyzing temporal point patterns and they led to the detection of temporal clustering of the citrus sudden death disease in an orange trees planting.
id RCAP_28f05128892207619598d2c91e3efd3e
oai_identifier_str oai:scielo:S0871-018X2016000300011
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Detecção de agrupamento temporal de doenças em culturas agrícolasCitrus sinensiscounting processdisease spreadhomogeneous Poisson point processhypotheses testingInformation about temporal dynamics of plant diseases is of paramount importance for appropriate technologies development for diseases management in production systems. The major interest when studying a temporal point pattern is to detect temporal clustering of events. There are some methods available for events cluster detection over time. The majority of these methods has been developed to detect temporal clustering inhuman diseases. The temporal patterns analysisfor plant diseases are not very well described in the literature. In this study, we aimed to propose new methods, based on both empirical distribution function and Monte Carlo simulation, for testing the null hypothesis that a temporal point pattern is purely random. These methods are compared to the time K-function for detecting temporal clustering for incidence of citrus sudden death disease in orange trees. All methodologies were found to show good performance for analyzing temporal point patterns and they led to the detection of temporal clustering of the citrus sudden death disease in an orange trees planting.Sociedade de Ciências Agrárias de Portugal2016-09-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articletext/htmlhttp://scielo.pt/scielo.php?script=sci_arttext&pid=S0871-018X2016000300011Revista de Ciências Agrárias v.39 n.3 2016reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAPenghttp://scielo.pt/scielo.php?script=sci_arttext&pid=S0871-018X2016000300011Mateus,Ana Lúcia Souza SilvaScalon,João Domingosinfo:eu-repo/semantics/openAccess2024-02-06T17:02:13Zoai:scielo:S0871-018X2016000300011Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T02:17:23.216025Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Detecção de agrupamento temporal de doenças em culturas agrícolas
title Detecção de agrupamento temporal de doenças em culturas agrícolas
spellingShingle Detecção de agrupamento temporal de doenças em culturas agrícolas
Mateus,Ana Lúcia Souza Silva
Citrus sinensis
counting process
disease spread
homogeneous Poisson point process
hypotheses testing
title_short Detecção de agrupamento temporal de doenças em culturas agrícolas
title_full Detecção de agrupamento temporal de doenças em culturas agrícolas
title_fullStr Detecção de agrupamento temporal de doenças em culturas agrícolas
title_full_unstemmed Detecção de agrupamento temporal de doenças em culturas agrícolas
title_sort Detecção de agrupamento temporal de doenças em culturas agrícolas
author Mateus,Ana Lúcia Souza Silva
author_facet Mateus,Ana Lúcia Souza Silva
Scalon,João Domingos
author_role author
author2 Scalon,João Domingos
author2_role author
dc.contributor.author.fl_str_mv Mateus,Ana Lúcia Souza Silva
Scalon,João Domingos
dc.subject.por.fl_str_mv Citrus sinensis
counting process
disease spread
homogeneous Poisson point process
hypotheses testing
topic Citrus sinensis
counting process
disease spread
homogeneous Poisson point process
hypotheses testing
description Information about temporal dynamics of plant diseases is of paramount importance for appropriate technologies development for diseases management in production systems. The major interest when studying a temporal point pattern is to detect temporal clustering of events. There are some methods available for events cluster detection over time. The majority of these methods has been developed to detect temporal clustering inhuman diseases. The temporal patterns analysisfor plant diseases are not very well described in the literature. In this study, we aimed to propose new methods, based on both empirical distribution function and Monte Carlo simulation, for testing the null hypothesis that a temporal point pattern is purely random. These methods are compared to the time K-function for detecting temporal clustering for incidence of citrus sudden death disease in orange trees. All methodologies were found to show good performance for analyzing temporal point patterns and they led to the detection of temporal clustering of the citrus sudden death disease in an orange trees planting.
publishDate 2016
dc.date.none.fl_str_mv 2016-09-01
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://scielo.pt/scielo.php?script=sci_arttext&pid=S0871-018X2016000300011
url http://scielo.pt/scielo.php?script=sci_arttext&pid=S0871-018X2016000300011
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv http://scielo.pt/scielo.php?script=sci_arttext&pid=S0871-018X2016000300011
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv text/html
dc.publisher.none.fl_str_mv Sociedade de Ciências Agrárias de Portugal
publisher.none.fl_str_mv Sociedade de Ciências Agrárias de Portugal
dc.source.none.fl_str_mv Revista de Ciências Agrárias v.39 n.3 2016
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799137268068253696