Spontaneous and ART-induced large offspring syndrome: similarities and differences in DNA methylome
Autor(a) principal: | |
---|---|
Data de Publicação: | 2022 |
Outros Autores: | , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10174/35577 https://doi.org/Li, Y., Sena Lopes, J., Coy-Fuster, P., & Rivera, R. M. (2022). Spontaneous and ART-induced large offspring syndrome: similarities and differences in DNA methylome. Epigenetics. https://doi.org/10.1101/2022.02.07.479430 https://doi.org/10.1080/15592294.2022.2067938 |
Resumo: | Large/abnormal offspring syndrome (LOS/AOS) is a congenital overgrowth syndrome reported in ruminants produced by assisted reproduction (ART-LOS) which exhibit global disruption of the epigenome and transcriptome. LOS/AOS shares phenotypes and epigenotypes with the human congenital overgrowth condition Beckwith-Wiedemann syndrome. We have reported that LOS occurs spontaneously (SLOS); however, to date, no study has been conducted to determine if SLOS has the same methylome epimutations as ART-LOS. In this study, we performed whole-genome bisulphite sequencing to examine global DNA methylation in bovine SLOS and ART-LOS tissues. We observed unique patterns of global distribution of differentially methylated regions (DMRs) over different genomic contexts, such as promoters, CpG Islands, shores and shelves, as well as at repetitive sequences. In addition, we included data from two previous LOS studies to identify shared vulnerable genomic loci in LOS. Overall, we identified 320 genomic loci in LOS that have alterations in DNA methylation when compared to controls. Specifically, there are 25 highly vulnerable loci that could potentially serve as molecular markers for the diagnosis of LOS, including at the promoters of DMRT2 and TBX18, at the imprinted gene bodies of IGF2R, PRDM8, and BLCAP/NNAT, and at multiple CpG Islands. We also observed tissue-specific DNA methylation patterns between muscle and blood, and conservation of ART-induced DNA methylation changes between muscle and blood. We conclude that as ART-LOS, SLOS is an epigenetic condition. In addition, SLOS and ART-LOS share similarities in methylome epimutations. |
id |
RCAP_290633b127e0b2fd04ba2ba90431cd9e |
---|---|
oai_identifier_str |
oai:dspace.uevora.pt:10174/35577 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Spontaneous and ART-induced large offspring syndrome: similarities and differences in DNA methylomeLarge/abnormal offspring syndrome (LOS/AOS) is a congenital overgrowth syndrome reported in ruminants produced by assisted reproduction (ART-LOS) which exhibit global disruption of the epigenome and transcriptome. LOS/AOS shares phenotypes and epigenotypes with the human congenital overgrowth condition Beckwith-Wiedemann syndrome. We have reported that LOS occurs spontaneously (SLOS); however, to date, no study has been conducted to determine if SLOS has the same methylome epimutations as ART-LOS. In this study, we performed whole-genome bisulphite sequencing to examine global DNA methylation in bovine SLOS and ART-LOS tissues. We observed unique patterns of global distribution of differentially methylated regions (DMRs) over different genomic contexts, such as promoters, CpG Islands, shores and shelves, as well as at repetitive sequences. In addition, we included data from two previous LOS studies to identify shared vulnerable genomic loci in LOS. Overall, we identified 320 genomic loci in LOS that have alterations in DNA methylation when compared to controls. Specifically, there are 25 highly vulnerable loci that could potentially serve as molecular markers for the diagnosis of LOS, including at the promoters of DMRT2 and TBX18, at the imprinted gene bodies of IGF2R, PRDM8, and BLCAP/NNAT, and at multiple CpG Islands. We also observed tissue-specific DNA methylation patterns between muscle and blood, and conservation of ART-induced DNA methylation changes between muscle and blood. We conclude that as ART-LOS, SLOS is an epigenetic condition. In addition, SLOS and ART-LOS share similarities in methylome epimutations.Taylor and Francis2023-10-10T08:46:51Z2023-10-102022-05-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://hdl.handle.net/10174/35577https://doi.org/Li, Y., Sena Lopes, J., Coy-Fuster, P., & Rivera, R. M. (2022). Spontaneous and ART-induced large offspring syndrome: similarities and differences in DNA methylome. Epigenetics. https://doi.org/10.1101/2022.02.07.479430http://hdl.handle.net/10174/35577https://doi.org/10.1080/15592294.2022.2067938engndndndndLi, YahanLopes, JordanaCoy, PilarRivera, Rocioinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-01-03T19:39:22Zoai:dspace.uevora.pt:10174/35577Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T01:23:58.434014Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Spontaneous and ART-induced large offspring syndrome: similarities and differences in DNA methylome |
title |
Spontaneous and ART-induced large offspring syndrome: similarities and differences in DNA methylome |
spellingShingle |
Spontaneous and ART-induced large offspring syndrome: similarities and differences in DNA methylome Li, Yahan |
title_short |
Spontaneous and ART-induced large offspring syndrome: similarities and differences in DNA methylome |
title_full |
Spontaneous and ART-induced large offspring syndrome: similarities and differences in DNA methylome |
title_fullStr |
Spontaneous and ART-induced large offspring syndrome: similarities and differences in DNA methylome |
title_full_unstemmed |
Spontaneous and ART-induced large offspring syndrome: similarities and differences in DNA methylome |
title_sort |
Spontaneous and ART-induced large offspring syndrome: similarities and differences in DNA methylome |
author |
Li, Yahan |
author_facet |
Li, Yahan Lopes, Jordana Coy, Pilar Rivera, Rocio |
author_role |
author |
author2 |
Lopes, Jordana Coy, Pilar Rivera, Rocio |
author2_role |
author author author |
dc.contributor.author.fl_str_mv |
Li, Yahan Lopes, Jordana Coy, Pilar Rivera, Rocio |
description |
Large/abnormal offspring syndrome (LOS/AOS) is a congenital overgrowth syndrome reported in ruminants produced by assisted reproduction (ART-LOS) which exhibit global disruption of the epigenome and transcriptome. LOS/AOS shares phenotypes and epigenotypes with the human congenital overgrowth condition Beckwith-Wiedemann syndrome. We have reported that LOS occurs spontaneously (SLOS); however, to date, no study has been conducted to determine if SLOS has the same methylome epimutations as ART-LOS. In this study, we performed whole-genome bisulphite sequencing to examine global DNA methylation in bovine SLOS and ART-LOS tissues. We observed unique patterns of global distribution of differentially methylated regions (DMRs) over different genomic contexts, such as promoters, CpG Islands, shores and shelves, as well as at repetitive sequences. In addition, we included data from two previous LOS studies to identify shared vulnerable genomic loci in LOS. Overall, we identified 320 genomic loci in LOS that have alterations in DNA methylation when compared to controls. Specifically, there are 25 highly vulnerable loci that could potentially serve as molecular markers for the diagnosis of LOS, including at the promoters of DMRT2 and TBX18, at the imprinted gene bodies of IGF2R, PRDM8, and BLCAP/NNAT, and at multiple CpG Islands. We also observed tissue-specific DNA methylation patterns between muscle and blood, and conservation of ART-induced DNA methylation changes between muscle and blood. We conclude that as ART-LOS, SLOS is an epigenetic condition. In addition, SLOS and ART-LOS share similarities in methylome epimutations. |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-05-01T00:00:00Z 2023-10-10T08:46:51Z 2023-10-10 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10174/35577 https://doi.org/Li, Y., Sena Lopes, J., Coy-Fuster, P., & Rivera, R. M. (2022). Spontaneous and ART-induced large offspring syndrome: similarities and differences in DNA methylome. Epigenetics. https://doi.org/10.1101/2022.02.07.479430 http://hdl.handle.net/10174/35577 https://doi.org/10.1080/15592294.2022.2067938 |
url |
http://hdl.handle.net/10174/35577 https://doi.org/Li, Y., Sena Lopes, J., Coy-Fuster, P., & Rivera, R. M. (2022). Spontaneous and ART-induced large offspring syndrome: similarities and differences in DNA methylome. Epigenetics. https://doi.org/10.1101/2022.02.07.479430 https://doi.org/10.1080/15592294.2022.2067938 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
nd nd nd nd |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Taylor and Francis |
publisher.none.fl_str_mv |
Taylor and Francis |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799136722319048704 |