Fusion object detection and action recognition to predict violent action
Autor(a) principal: | |
---|---|
Data de Publicação: | 2023 |
Outros Autores: | , , , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | https://hdl.handle.net/1822/85724 |
Resumo: | In the context of Shared Autonomous Vehicles, the need to monitor the environment inside the car will be crucial. This article focuses on the application of deep learning algorithms to present a fusion monitoring solution which was three different algorithms: a violent action detection system, which recognizes violent behaviors between passengers, a violent object detection system, and a lost items detection system. Public datasets were used for object detection algorithms (COCO and TAO) to train state-of-the-art algorithms such as YOLOv5. For violent action detection, the MoLa InCar dataset was used to train on state-of-the-art algorithms such as I3D, R(2+1)D, SlowFast, TSN, and TSM. Finally, an embedded automotive solution was used to demonstrate that both methods are running in real-time. |
id |
RCAP_29fb6cc36c48826f66cf09767ff15ca3 |
---|---|
oai_identifier_str |
oai:repositorium.sdum.uminho.pt:1822/85724 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Fusion object detection and action recognition to predict violent actionMachine learningVisual intelligenceObject detectionImage processingAction recognitionAutonomous vehiclesIn the context of Shared Autonomous Vehicles, the need to monitor the environment inside the car will be crucial. This article focuses on the application of deep learning algorithms to present a fusion monitoring solution which was three different algorithms: a violent action detection system, which recognizes violent behaviors between passengers, a violent object detection system, and a lost items detection system. Public datasets were used for object detection algorithms (COCO and TAO) to train state-of-the-art algorithms such as YOLOv5. For violent action detection, the MoLa InCar dataset was used to train on state-of-the-art algorithms such as I3D, R(2+1)D, SlowFast, TSN, and TSM. Finally, an embedded automotive solution was used to demonstrate that both methods are running in real-time.Work has been supported by FCT—Fundação para a Ciência e Tecnologia within the R&D Units Project Scope: UIDB/00319/2020. This work was partly financed by European social funds through the Portugal 2020 program, and via national funds through FCT—Foundation for Science and Technology, within the scope of projects POCH-02-5369-FSE-000006. The author would also like to acknowledge FCT for the attributed Doctoral grant PD/BDE/150500/2019.Multidisciplinary Digital Publishing Institute (MDPI)Universidade do MinhoRodrigues, Nelson Ricardo PereiraCosta, Nuno Miguel CerqueiraMelo, César Gonçalo MacedoAbbasi, AliFonseca, Jaime C.Cardoso, PauloBorges, João2023-06-152023-06-15T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttps://hdl.handle.net/1822/85724engRodrigues, N.R.P.; da Costa, N.M.C.; Melo, C.; Abbasi, A.; Fonseca, J.C.; Cardoso, P.; Borges, J. Fusion Object Detection and Action Recognition to Predict Violent Action. Sensors 2023, 23, 5610. https://doi.org/10.3390/s231256101424-82201424-822010.3390/s23125610374207765610https://www.mdpi.com/1424-8220/23/12/5610info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-12-30T01:29:02Zoai:repositorium.sdum.uminho.pt:1822/85724Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T20:10:05.833739Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Fusion object detection and action recognition to predict violent action |
title |
Fusion object detection and action recognition to predict violent action |
spellingShingle |
Fusion object detection and action recognition to predict violent action Rodrigues, Nelson Ricardo Pereira Machine learning Visual intelligence Object detection Image processing Action recognition Autonomous vehicles |
title_short |
Fusion object detection and action recognition to predict violent action |
title_full |
Fusion object detection and action recognition to predict violent action |
title_fullStr |
Fusion object detection and action recognition to predict violent action |
title_full_unstemmed |
Fusion object detection and action recognition to predict violent action |
title_sort |
Fusion object detection and action recognition to predict violent action |
author |
Rodrigues, Nelson Ricardo Pereira |
author_facet |
Rodrigues, Nelson Ricardo Pereira Costa, Nuno Miguel Cerqueira Melo, César Gonçalo Macedo Abbasi, Ali Fonseca, Jaime C. Cardoso, Paulo Borges, João |
author_role |
author |
author2 |
Costa, Nuno Miguel Cerqueira Melo, César Gonçalo Macedo Abbasi, Ali Fonseca, Jaime C. Cardoso, Paulo Borges, João |
author2_role |
author author author author author author |
dc.contributor.none.fl_str_mv |
Universidade do Minho |
dc.contributor.author.fl_str_mv |
Rodrigues, Nelson Ricardo Pereira Costa, Nuno Miguel Cerqueira Melo, César Gonçalo Macedo Abbasi, Ali Fonseca, Jaime C. Cardoso, Paulo Borges, João |
dc.subject.por.fl_str_mv |
Machine learning Visual intelligence Object detection Image processing Action recognition Autonomous vehicles |
topic |
Machine learning Visual intelligence Object detection Image processing Action recognition Autonomous vehicles |
description |
In the context of Shared Autonomous Vehicles, the need to monitor the environment inside the car will be crucial. This article focuses on the application of deep learning algorithms to present a fusion monitoring solution which was three different algorithms: a violent action detection system, which recognizes violent behaviors between passengers, a violent object detection system, and a lost items detection system. Public datasets were used for object detection algorithms (COCO and TAO) to train state-of-the-art algorithms such as YOLOv5. For violent action detection, the MoLa InCar dataset was used to train on state-of-the-art algorithms such as I3D, R(2+1)D, SlowFast, TSN, and TSM. Finally, an embedded automotive solution was used to demonstrate that both methods are running in real-time. |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023-06-15 2023-06-15T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://hdl.handle.net/1822/85724 |
url |
https://hdl.handle.net/1822/85724 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Rodrigues, N.R.P.; da Costa, N.M.C.; Melo, C.; Abbasi, A.; Fonseca, J.C.; Cardoso, P.; Borges, J. Fusion Object Detection and Action Recognition to Predict Violent Action. Sensors 2023, 23, 5610. https://doi.org/10.3390/s23125610 1424-8220 1424-8220 10.3390/s23125610 37420776 5610 https://www.mdpi.com/1424-8220/23/12/5610 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Multidisciplinary Digital Publishing Institute (MDPI) |
publisher.none.fl_str_mv |
Multidisciplinary Digital Publishing Institute (MDPI) |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799133349665570816 |