Big Bang Bifurcation Analysis and Allee Effect in Generic Growth Functions
Autor(a) principal: | |
---|---|
Data de Publicação: | 2016 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10400.21/7275 |
Resumo: | The main purpose of this work is to study the dynamics and bifurcation properties of generic growth functions, which are defined by the population size functions of the generic growth equation. This family of unimodal maps naturally incorporates a principal focus of ecological and biological research: the Allee effect. The analysis of this kind of extinction phenomenon allows to identify a class of Allee’s functions and characterize the corresponding Allee’s effect region and Allee’s bifurcation curve. The bifurcation analysis is founded on the performance of fold and flip bifurcations. The dynamical behavior is rich with abundant complex bifurcation structures, the big bang bifurcations of the so-called “box-within-a-box” fractal type being the most outstanding. Moreover, these bifurcation cascades converge to different big bang bifurcation curves with distinct kinds of boxes, where for the corresponding parameter values several attractors are associated. To the best of our knowledge, these results represent an original contribution to clarify the big bang bifurcation analysis of continuous 1D maps. |
id |
RCAP_2a55764a208e75e23cc0bd278334c4d0 |
---|---|
oai_identifier_str |
oai:repositorio.ipl.pt:10400.21/7275 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Big Bang Bifurcation Analysis and Allee Effect in Generic Growth FunctionsGeneric growth functionsPopulation dynamicsAllee effectBig bang bifurcationsFold and flip bifurcationsThe main purpose of this work is to study the dynamics and bifurcation properties of generic growth functions, which are defined by the population size functions of the generic growth equation. This family of unimodal maps naturally incorporates a principal focus of ecological and biological research: the Allee effect. The analysis of this kind of extinction phenomenon allows to identify a class of Allee’s functions and characterize the corresponding Allee’s effect region and Allee’s bifurcation curve. The bifurcation analysis is founded on the performance of fold and flip bifurcations. The dynamical behavior is rich with abundant complex bifurcation structures, the big bang bifurcations of the so-called “box-within-a-box” fractal type being the most outstanding. Moreover, these bifurcation cascades converge to different big bang bifurcation curves with distinct kinds of boxes, where for the corresponding parameter values several attractors are associated. To the best of our knowledge, these results represent an original contribution to clarify the big bang bifurcation analysis of continuous 1D maps.UID/MAT/00006/2013World Scientific PublishingRCIPLRocha, J. LeonelTaha, Abdel-KaddousFournier-Prunaret, D.2017-07-18T10:45:49Z2016-062016-06-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10400.21/7275engROCHA, J. Leonel; TAHA, Abdel-Kaddous; FOURNIER-PRUNARET,D. - Big Bang Bifurcation Analysis and Allee Effect in Generic Growth Functions. International Journal of Bifurcation and Chaos. ISSN 0218-1274. Vol. 26, N. º 6 (2016), pp. 1650108-1-1650108-200218-127410.1142/S021812741650108Xmetadata only accessinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-08-03T09:53:07Zoai:repositorio.ipl.pt:10400.21/7275Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T20:16:15.421763Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Big Bang Bifurcation Analysis and Allee Effect in Generic Growth Functions |
title |
Big Bang Bifurcation Analysis and Allee Effect in Generic Growth Functions |
spellingShingle |
Big Bang Bifurcation Analysis and Allee Effect in Generic Growth Functions Rocha, J. Leonel Generic growth functions Population dynamics Allee effect Big bang bifurcations Fold and flip bifurcations |
title_short |
Big Bang Bifurcation Analysis and Allee Effect in Generic Growth Functions |
title_full |
Big Bang Bifurcation Analysis and Allee Effect in Generic Growth Functions |
title_fullStr |
Big Bang Bifurcation Analysis and Allee Effect in Generic Growth Functions |
title_full_unstemmed |
Big Bang Bifurcation Analysis and Allee Effect in Generic Growth Functions |
title_sort |
Big Bang Bifurcation Analysis and Allee Effect in Generic Growth Functions |
author |
Rocha, J. Leonel |
author_facet |
Rocha, J. Leonel Taha, Abdel-Kaddous Fournier-Prunaret, D. |
author_role |
author |
author2 |
Taha, Abdel-Kaddous Fournier-Prunaret, D. |
author2_role |
author author |
dc.contributor.none.fl_str_mv |
RCIPL |
dc.contributor.author.fl_str_mv |
Rocha, J. Leonel Taha, Abdel-Kaddous Fournier-Prunaret, D. |
dc.subject.por.fl_str_mv |
Generic growth functions Population dynamics Allee effect Big bang bifurcations Fold and flip bifurcations |
topic |
Generic growth functions Population dynamics Allee effect Big bang bifurcations Fold and flip bifurcations |
description |
The main purpose of this work is to study the dynamics and bifurcation properties of generic growth functions, which are defined by the population size functions of the generic growth equation. This family of unimodal maps naturally incorporates a principal focus of ecological and biological research: the Allee effect. The analysis of this kind of extinction phenomenon allows to identify a class of Allee’s functions and characterize the corresponding Allee’s effect region and Allee’s bifurcation curve. The bifurcation analysis is founded on the performance of fold and flip bifurcations. The dynamical behavior is rich with abundant complex bifurcation structures, the big bang bifurcations of the so-called “box-within-a-box” fractal type being the most outstanding. Moreover, these bifurcation cascades converge to different big bang bifurcation curves with distinct kinds of boxes, where for the corresponding parameter values several attractors are associated. To the best of our knowledge, these results represent an original contribution to clarify the big bang bifurcation analysis of continuous 1D maps. |
publishDate |
2016 |
dc.date.none.fl_str_mv |
2016-06 2016-06-01T00:00:00Z 2017-07-18T10:45:49Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10400.21/7275 |
url |
http://hdl.handle.net/10400.21/7275 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
ROCHA, J. Leonel; TAHA, Abdel-Kaddous; FOURNIER-PRUNARET,D. - Big Bang Bifurcation Analysis and Allee Effect in Generic Growth Functions. International Journal of Bifurcation and Chaos. ISSN 0218-1274. Vol. 26, N. º 6 (2016), pp. 1650108-1-1650108-20 0218-1274 10.1142/S021812741650108X |
dc.rights.driver.fl_str_mv |
metadata only access info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
metadata only access |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
World Scientific Publishing |
publisher.none.fl_str_mv |
World Scientific Publishing |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799133422001586176 |