Vector bundles E on P^3 with homological dimension 2 and chi(End E)=1
Autor(a) principal: | |
---|---|
Data de Publicação: | 2021 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10071/22539 |
Resumo: | We find the complete integer solutions of the equation X2 + Y2 + Z2 − 4XY − 4YZ + 10XZ = 1. As an application, we prove that, for each solution (a, b, c) such that a > 0, b − 2a > 0 and (b − 2a)2 ≥ 4a, there is a vector bundle E on ℙ3 defined by a minimal linear resolution 0 → Oℙ3 (−2)a → Oℙ3 (−1)b → Oℙc3 → E → 0. In particular, E satisfies ?(End E) = 1. |
id |
RCAP_2a6b9e7ea6a069b5b9cf7f3713f1ab33 |
---|---|
oai_identifier_str |
oai:repositorio.iscte-iul.pt:10071/22539 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Vector bundles E on P^3 with homological dimension 2 and chi(End E)=1Homological dimensionLinear resolutionsDiophantine equationsTernary quadratic formsWe find the complete integer solutions of the equation X2 + Y2 + Z2 − 4XY − 4YZ + 10XZ = 1. As an application, we prove that, for each solution (a, b, c) such that a > 0, b − 2a > 0 and (b − 2a)2 ≥ 4a, there is a vector bundle E on ℙ3 defined by a minimal linear resolution 0 → Oℙ3 (−2)a → Oℙ3 (−1)b → Oℙc3 → E → 0. In particular, E satisfies ?(End E) = 1.Walter de Gruyter GmbH2022-04-07T00:00:00Z2021-01-01T00:00:00Z20212021-05-07T11:26:48Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10071/22539eng0933-774110.1515/forum-2020-0169Mendes, S.Soares, H.Miró-Roig, M.info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-11-09T17:23:00Zoai:repositorio.iscte-iul.pt:10071/22539Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T22:10:34.616627Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Vector bundles E on P^3 with homological dimension 2 and chi(End E)=1 |
title |
Vector bundles E on P^3 with homological dimension 2 and chi(End E)=1 |
spellingShingle |
Vector bundles E on P^3 with homological dimension 2 and chi(End E)=1 Mendes, S. Homological dimension Linear resolutions Diophantine equations Ternary quadratic forms |
title_short |
Vector bundles E on P^3 with homological dimension 2 and chi(End E)=1 |
title_full |
Vector bundles E on P^3 with homological dimension 2 and chi(End E)=1 |
title_fullStr |
Vector bundles E on P^3 with homological dimension 2 and chi(End E)=1 |
title_full_unstemmed |
Vector bundles E on P^3 with homological dimension 2 and chi(End E)=1 |
title_sort |
Vector bundles E on P^3 with homological dimension 2 and chi(End E)=1 |
author |
Mendes, S. |
author_facet |
Mendes, S. Soares, H. Miró-Roig, M. |
author_role |
author |
author2 |
Soares, H. Miró-Roig, M. |
author2_role |
author author |
dc.contributor.author.fl_str_mv |
Mendes, S. Soares, H. Miró-Roig, M. |
dc.subject.por.fl_str_mv |
Homological dimension Linear resolutions Diophantine equations Ternary quadratic forms |
topic |
Homological dimension Linear resolutions Diophantine equations Ternary quadratic forms |
description |
We find the complete integer solutions of the equation X2 + Y2 + Z2 − 4XY − 4YZ + 10XZ = 1. As an application, we prove that, for each solution (a, b, c) such that a > 0, b − 2a > 0 and (b − 2a)2 ≥ 4a, there is a vector bundle E on ℙ3 defined by a minimal linear resolution 0 → Oℙ3 (−2)a → Oℙ3 (−1)b → Oℙc3 → E → 0. In particular, E satisfies ?(End E) = 1. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-01-01T00:00:00Z 2021 2021-05-07T11:26:48Z 2022-04-07T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10071/22539 |
url |
http://hdl.handle.net/10071/22539 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
0933-7741 10.1515/forum-2020-0169 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Walter de Gruyter GmbH |
publisher.none.fl_str_mv |
Walter de Gruyter GmbH |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799134659392569344 |