Real-time detection of vine trunk for robot localization using deep learning models developed for edge TPU devices
Autor(a) principal: | |
---|---|
Data de Publicação: | 2022 |
Outros Autores: | , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10400.11/8015 |
Resumo: | The concept of the Internet of Things (IoT) in agriculture is associated with the use of high-tech devices such as robots and sensors that are interconnected to assess or monitor conditions on a particular plot of land and then deploy the various factors of production such as seeds, fertilizer, water, etc., accordingly. Vine trunk detection can help create an accurate map of the vineyard that the agricultural robot can rely on to safely navigate and perform a variety of agricultural tasks such as harvesting, pruning, etc. In this work, the state-of-the-art single-shot multibox detector (SSD) with MobileDet Edge TPU and MobileNet Edge TPU models as the backbone was used to detect the tree trunks in the vineyard. Compared to the SSD with MobileNet-V1, MobileNet-V2, and MobileDet as backbone, the SSD with MobileNet Edge TPU was more accurate in inference on the Raspberrypi, with almost the same inference time on the TPU. The SSD with MobileDet Edge TPU achieved the second-best accurate model. Additionally, this work examines the effects of some features, including the size of the input model, the quantity of training data, and the diversity of the training dataset. Increasing the size of the input model and the training dataset increased the performance of the model. |
id |
RCAP_2aaafd94ca13365fb2d14d5583685d60 |
---|---|
oai_identifier_str |
oai:repositorio.ipcb.pt:10400.11/8015 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Real-time detection of vine trunk for robot localization using deep learning models developed for edge TPU devicesagriculturedeep learningIOTrobottrunk detectionThe concept of the Internet of Things (IoT) in agriculture is associated with the use of high-tech devices such as robots and sensors that are interconnected to assess or monitor conditions on a particular plot of land and then deploy the various factors of production such as seeds, fertilizer, water, etc., accordingly. Vine trunk detection can help create an accurate map of the vineyard that the agricultural robot can rely on to safely navigate and perform a variety of agricultural tasks such as harvesting, pruning, etc. In this work, the state-of-the-art single-shot multibox detector (SSD) with MobileDet Edge TPU and MobileNet Edge TPU models as the backbone was used to detect the tree trunks in the vineyard. Compared to the SSD with MobileNet-V1, MobileNet-V2, and MobileDet as backbone, the SSD with MobileNet Edge TPU was more accurate in inference on the Raspberrypi, with almost the same inference time on the TPU. The SSD with MobileDet Edge TPU achieved the second-best accurate model. Additionally, this work examines the effects of some features, including the size of the input model, the quantity of training data, and the diversity of the training dataset. Increasing the size of the input model and the training dataset increased the performance of the model.Repositório Científico do Instituto Politécnico de Castelo BrancoAlibabaei, KhadijehAssunção, EduardoGaspar, Pedro D.Soares, Vasco N. G. J.Caldeira, João M. L. P.2022-07-04T09:58:07Z20222022-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10400.11/8015engALIBABAEI, Khadijeh [et al.] (2022) - Real-time detection of vine trunk for robot localization using deep learning models developed for edge TPU devices. Future Internet. DOI 10.3390/fi1407019910.3390/fi14070199info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-03-25T01:47:49Zoai:repositorio.ipcb.pt:10400.11/8015Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T16:38:30.396134Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Real-time detection of vine trunk for robot localization using deep learning models developed for edge TPU devices |
title |
Real-time detection of vine trunk for robot localization using deep learning models developed for edge TPU devices |
spellingShingle |
Real-time detection of vine trunk for robot localization using deep learning models developed for edge TPU devices Alibabaei, Khadijeh agriculture deep learning IOT robot trunk detection |
title_short |
Real-time detection of vine trunk for robot localization using deep learning models developed for edge TPU devices |
title_full |
Real-time detection of vine trunk for robot localization using deep learning models developed for edge TPU devices |
title_fullStr |
Real-time detection of vine trunk for robot localization using deep learning models developed for edge TPU devices |
title_full_unstemmed |
Real-time detection of vine trunk for robot localization using deep learning models developed for edge TPU devices |
title_sort |
Real-time detection of vine trunk for robot localization using deep learning models developed for edge TPU devices |
author |
Alibabaei, Khadijeh |
author_facet |
Alibabaei, Khadijeh Assunção, Eduardo Gaspar, Pedro D. Soares, Vasco N. G. J. Caldeira, João M. L. P. |
author_role |
author |
author2 |
Assunção, Eduardo Gaspar, Pedro D. Soares, Vasco N. G. J. Caldeira, João M. L. P. |
author2_role |
author author author author |
dc.contributor.none.fl_str_mv |
Repositório Científico do Instituto Politécnico de Castelo Branco |
dc.contributor.author.fl_str_mv |
Alibabaei, Khadijeh Assunção, Eduardo Gaspar, Pedro D. Soares, Vasco N. G. J. Caldeira, João M. L. P. |
dc.subject.por.fl_str_mv |
agriculture deep learning IOT robot trunk detection |
topic |
agriculture deep learning IOT robot trunk detection |
description |
The concept of the Internet of Things (IoT) in agriculture is associated with the use of high-tech devices such as robots and sensors that are interconnected to assess or monitor conditions on a particular plot of land and then deploy the various factors of production such as seeds, fertilizer, water, etc., accordingly. Vine trunk detection can help create an accurate map of the vineyard that the agricultural robot can rely on to safely navigate and perform a variety of agricultural tasks such as harvesting, pruning, etc. In this work, the state-of-the-art single-shot multibox detector (SSD) with MobileDet Edge TPU and MobileNet Edge TPU models as the backbone was used to detect the tree trunks in the vineyard. Compared to the SSD with MobileNet-V1, MobileNet-V2, and MobileDet as backbone, the SSD with MobileNet Edge TPU was more accurate in inference on the Raspberrypi, with almost the same inference time on the TPU. The SSD with MobileDet Edge TPU achieved the second-best accurate model. Additionally, this work examines the effects of some features, including the size of the input model, the quantity of training data, and the diversity of the training dataset. Increasing the size of the input model and the training dataset increased the performance of the model. |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-07-04T09:58:07Z 2022 2022-01-01T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10400.11/8015 |
url |
http://hdl.handle.net/10400.11/8015 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
ALIBABAEI, Khadijeh [et al.] (2022) - Real-time detection of vine trunk for robot localization using deep learning models developed for edge TPU devices. Future Internet. DOI 10.3390/fi14070199 10.3390/fi14070199 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799130849412644864 |