Real-time detection of vine trunk for robot localization using deep learning models developed for edge TPU devices

Detalhes bibliográficos
Autor(a) principal: Alibabaei, Khadijeh
Data de Publicação: 2022
Outros Autores: Assunção, Eduardo, Gaspar, Pedro D., Soares, Vasco N. G. J., Caldeira, João M. L. P.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10400.11/8015
Resumo: The concept of the Internet of Things (IoT) in agriculture is associated with the use of high-tech devices such as robots and sensors that are interconnected to assess or monitor conditions on a particular plot of land and then deploy the various factors of production such as seeds, fertilizer, water, etc., accordingly. Vine trunk detection can help create an accurate map of the vineyard that the agricultural robot can rely on to safely navigate and perform a variety of agricultural tasks such as harvesting, pruning, etc. In this work, the state-of-the-art single-shot multibox detector (SSD) with MobileDet Edge TPU and MobileNet Edge TPU models as the backbone was used to detect the tree trunks in the vineyard. Compared to the SSD with MobileNet-V1, MobileNet-V2, and MobileDet as backbone, the SSD with MobileNet Edge TPU was more accurate in inference on the Raspberrypi, with almost the same inference time on the TPU. The SSD with MobileDet Edge TPU achieved the second-best accurate model. Additionally, this work examines the effects of some features, including the size of the input model, the quantity of training data, and the diversity of the training dataset. Increasing the size of the input model and the training dataset increased the performance of the model.
id RCAP_2aaafd94ca13365fb2d14d5583685d60
oai_identifier_str oai:repositorio.ipcb.pt:10400.11/8015
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Real-time detection of vine trunk for robot localization using deep learning models developed for edge TPU devicesagriculturedeep learningIOTrobottrunk detectionThe concept of the Internet of Things (IoT) in agriculture is associated with the use of high-tech devices such as robots and sensors that are interconnected to assess or monitor conditions on a particular plot of land and then deploy the various factors of production such as seeds, fertilizer, water, etc., accordingly. Vine trunk detection can help create an accurate map of the vineyard that the agricultural robot can rely on to safely navigate and perform a variety of agricultural tasks such as harvesting, pruning, etc. In this work, the state-of-the-art single-shot multibox detector (SSD) with MobileDet Edge TPU and MobileNet Edge TPU models as the backbone was used to detect the tree trunks in the vineyard. Compared to the SSD with MobileNet-V1, MobileNet-V2, and MobileDet as backbone, the SSD with MobileNet Edge TPU was more accurate in inference on the Raspberrypi, with almost the same inference time on the TPU. The SSD with MobileDet Edge TPU achieved the second-best accurate model. Additionally, this work examines the effects of some features, including the size of the input model, the quantity of training data, and the diversity of the training dataset. Increasing the size of the input model and the training dataset increased the performance of the model.Repositório Científico do Instituto Politécnico de Castelo BrancoAlibabaei, KhadijehAssunção, EduardoGaspar, Pedro D.Soares, Vasco N. G. J.Caldeira, João M. L. P.2022-07-04T09:58:07Z20222022-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10400.11/8015engALIBABAEI, Khadijeh [et al.] (2022) - Real-time detection of vine trunk for robot localization using deep learning models developed for edge TPU devices. Future Internet. DOI 10.3390/fi1407019910.3390/fi14070199info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-03-25T01:47:49Zoai:repositorio.ipcb.pt:10400.11/8015Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T16:38:30.396134Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Real-time detection of vine trunk for robot localization using deep learning models developed for edge TPU devices
title Real-time detection of vine trunk for robot localization using deep learning models developed for edge TPU devices
spellingShingle Real-time detection of vine trunk for robot localization using deep learning models developed for edge TPU devices
Alibabaei, Khadijeh
agriculture
deep learning
IOT
robot
trunk detection
title_short Real-time detection of vine trunk for robot localization using deep learning models developed for edge TPU devices
title_full Real-time detection of vine trunk for robot localization using deep learning models developed for edge TPU devices
title_fullStr Real-time detection of vine trunk for robot localization using deep learning models developed for edge TPU devices
title_full_unstemmed Real-time detection of vine trunk for robot localization using deep learning models developed for edge TPU devices
title_sort Real-time detection of vine trunk for robot localization using deep learning models developed for edge TPU devices
author Alibabaei, Khadijeh
author_facet Alibabaei, Khadijeh
Assunção, Eduardo
Gaspar, Pedro D.
Soares, Vasco N. G. J.
Caldeira, João M. L. P.
author_role author
author2 Assunção, Eduardo
Gaspar, Pedro D.
Soares, Vasco N. G. J.
Caldeira, João M. L. P.
author2_role author
author
author
author
dc.contributor.none.fl_str_mv Repositório Científico do Instituto Politécnico de Castelo Branco
dc.contributor.author.fl_str_mv Alibabaei, Khadijeh
Assunção, Eduardo
Gaspar, Pedro D.
Soares, Vasco N. G. J.
Caldeira, João M. L. P.
dc.subject.por.fl_str_mv agriculture
deep learning
IOT
robot
trunk detection
topic agriculture
deep learning
IOT
robot
trunk detection
description The concept of the Internet of Things (IoT) in agriculture is associated with the use of high-tech devices such as robots and sensors that are interconnected to assess or monitor conditions on a particular plot of land and then deploy the various factors of production such as seeds, fertilizer, water, etc., accordingly. Vine trunk detection can help create an accurate map of the vineyard that the agricultural robot can rely on to safely navigate and perform a variety of agricultural tasks such as harvesting, pruning, etc. In this work, the state-of-the-art single-shot multibox detector (SSD) with MobileDet Edge TPU and MobileNet Edge TPU models as the backbone was used to detect the tree trunks in the vineyard. Compared to the SSD with MobileNet-V1, MobileNet-V2, and MobileDet as backbone, the SSD with MobileNet Edge TPU was more accurate in inference on the Raspberrypi, with almost the same inference time on the TPU. The SSD with MobileDet Edge TPU achieved the second-best accurate model. Additionally, this work examines the effects of some features, including the size of the input model, the quantity of training data, and the diversity of the training dataset. Increasing the size of the input model and the training dataset increased the performance of the model.
publishDate 2022
dc.date.none.fl_str_mv 2022-07-04T09:58:07Z
2022
2022-01-01T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10400.11/8015
url http://hdl.handle.net/10400.11/8015
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv ALIBABAEI, Khadijeh [et al.] (2022) - Real-time detection of vine trunk for robot localization using deep learning models developed for edge TPU devices. Future Internet. DOI 10.3390/fi14070199
10.3390/fi14070199
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799130849412644864