Predicting financial distress across the football industry

Detalhes bibliográficos
Autor(a) principal: Conde, Pedro de Almeida
Data de Publicação: 2023
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10400.14/41454
Resumo: Accurately forecasting financial distress within the football industry holds significant importance for various stakeholders, including creditors, investors, shareholders and local communities. This research employs machine learning algorithms to forecast financial distress within the football industry over a 5-year period and by analyzing clubs' financial ratios. Two machine learning models are performed: a logistic regression and a neural network model. The primary objectives of this study are to test the effectiveness of these models, evaluate the financial performance of football clubs, provide an overview of the industry as a whole and examine the influence of the Covid-19 pandemic on financial distress within the sector. Despite the high levels of debt, unprofitability, irrationality and mismanagement that are prevalent in football clubs, bankruptcies are not such an ordinary event, being relatively rare. The machine learning models implemented in this study yielded interesting and favorable results, with the neural network model demonstrating a slightly higher level of predictive accuracy. However, the significant impact of Covid-19 on the overall industry partially impaired the predictive capabilities of the models, raising questions about their practical applicability. This study suggests that the unique status of football clubs, which shields them from being treated as ordinary businesses, may be the only factor that enables their survival.
id RCAP_2b0f8bd5bf1257e1ec352dabf7d6dbcc
oai_identifier_str oai:repositorio.ucp.pt:10400.14/41454
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Predicting financial distress across the football industryFinancial distressFootball industryLogistic regressionNeural networkNon-distressed clubsDistressed clubsFinancial ratiosDificuldades financeirasIndústria futebolísticaRegressão logísticaRede neuronalClubes financeiramente saudáveisClubes com dificuldades financeirasRácios financeirosDomínio/Área Científica::Ciências Sociais::Economia e GestãoAccurately forecasting financial distress within the football industry holds significant importance for various stakeholders, including creditors, investors, shareholders and local communities. This research employs machine learning algorithms to forecast financial distress within the football industry over a 5-year period and by analyzing clubs' financial ratios. Two machine learning models are performed: a logistic regression and a neural network model. The primary objectives of this study are to test the effectiveness of these models, evaluate the financial performance of football clubs, provide an overview of the industry as a whole and examine the influence of the Covid-19 pandemic on financial distress within the sector. Despite the high levels of debt, unprofitability, irrationality and mismanagement that are prevalent in football clubs, bankruptcies are not such an ordinary event, being relatively rare. The machine learning models implemented in this study yielded interesting and favorable results, with the neural network model demonstrating a slightly higher level of predictive accuracy. However, the significant impact of Covid-19 on the overall industry partially impaired the predictive capabilities of the models, raising questions about their practical applicability. This study suggests that the unique status of football clubs, which shields them from being treated as ordinary businesses, may be the only factor that enables their survival.A previsão de potenciais dificuldades financeiras na indústria futebolística contém uma grande importância para todos os participantes no negócio, incluindo credores, investidores, acionistas e comunidades locais. Nesta dissertação foram implementados algoritmos de machine learning para que se efetuasse a previsão de dificuldades financeiras para um período de 5 anos, através do uso de rácios financeiros. Os dois modelos elaborados foram uma regressão logística e uma rede neuronal. Os principais objetivos deste estudo são testar o desempenho destes modelos, avaliar a performance financeira dos clubes de futebol, efetuar uma visão geral da indústria futebolística e examinar o impacto da Covid-19 no setor. Apesar dos elevados níveis de endividamento, prejuízos, irracionalidade e má gestão, a verdade é que o número de falências entres clubes de futebol é reduzida. Os modelos de machine learning aplicados neste estudo apresentaram resultados interessantes e positivos. Contudo, o impacto da pandemia na indústria afetou a capacidade de previsão dos modelos, levantando questões acerca da sua potencial aplicação no mundo real. Este estudo sugere ainda que o estatuto dos clubes de futebol, que os diferencia de um negócio normal, pode ser o único fator que promove a sua sobrevivência.Reis, RicardoVeritati - Repositório Institucional da Universidade Católica PortuguesaConde, Pedro de Almeida2023-06-28T10:53:47Z2023-01-232023-012023-01-23T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10400.14/41454TID:203253140enginfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-07-12T17:47:02Zoai:repositorio.ucp.pt:10400.14/41454Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T18:34:08.781947Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Predicting financial distress across the football industry
title Predicting financial distress across the football industry
spellingShingle Predicting financial distress across the football industry
Conde, Pedro de Almeida
Financial distress
Football industry
Logistic regression
Neural network
Non-distressed clubs
Distressed clubs
Financial ratios
Dificuldades financeiras
Indústria futebolística
Regressão logística
Rede neuronal
Clubes financeiramente saudáveis
Clubes com dificuldades financeiras
Rácios financeiros
Domínio/Área Científica::Ciências Sociais::Economia e Gestão
title_short Predicting financial distress across the football industry
title_full Predicting financial distress across the football industry
title_fullStr Predicting financial distress across the football industry
title_full_unstemmed Predicting financial distress across the football industry
title_sort Predicting financial distress across the football industry
author Conde, Pedro de Almeida
author_facet Conde, Pedro de Almeida
author_role author
dc.contributor.none.fl_str_mv Reis, Ricardo
Veritati - Repositório Institucional da Universidade Católica Portuguesa
dc.contributor.author.fl_str_mv Conde, Pedro de Almeida
dc.subject.por.fl_str_mv Financial distress
Football industry
Logistic regression
Neural network
Non-distressed clubs
Distressed clubs
Financial ratios
Dificuldades financeiras
Indústria futebolística
Regressão logística
Rede neuronal
Clubes financeiramente saudáveis
Clubes com dificuldades financeiras
Rácios financeiros
Domínio/Área Científica::Ciências Sociais::Economia e Gestão
topic Financial distress
Football industry
Logistic regression
Neural network
Non-distressed clubs
Distressed clubs
Financial ratios
Dificuldades financeiras
Indústria futebolística
Regressão logística
Rede neuronal
Clubes financeiramente saudáveis
Clubes com dificuldades financeiras
Rácios financeiros
Domínio/Área Científica::Ciências Sociais::Economia e Gestão
description Accurately forecasting financial distress within the football industry holds significant importance for various stakeholders, including creditors, investors, shareholders and local communities. This research employs machine learning algorithms to forecast financial distress within the football industry over a 5-year period and by analyzing clubs' financial ratios. Two machine learning models are performed: a logistic regression and a neural network model. The primary objectives of this study are to test the effectiveness of these models, evaluate the financial performance of football clubs, provide an overview of the industry as a whole and examine the influence of the Covid-19 pandemic on financial distress within the sector. Despite the high levels of debt, unprofitability, irrationality and mismanagement that are prevalent in football clubs, bankruptcies are not such an ordinary event, being relatively rare. The machine learning models implemented in this study yielded interesting and favorable results, with the neural network model demonstrating a slightly higher level of predictive accuracy. However, the significant impact of Covid-19 on the overall industry partially impaired the predictive capabilities of the models, raising questions about their practical applicability. This study suggests that the unique status of football clubs, which shields them from being treated as ordinary businesses, may be the only factor that enables their survival.
publishDate 2023
dc.date.none.fl_str_mv 2023-06-28T10:53:47Z
2023-01-23
2023-01
2023-01-23T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10400.14/41454
TID:203253140
url http://hdl.handle.net/10400.14/41454
identifier_str_mv TID:203253140
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799132067647193088