A robust sparce linear approach for contamined data
Autor(a) principal: | |
---|---|
Data de Publicação: | 2019 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/1822/72374 |
Resumo: | A challenging problem in a linear regression model is to select a parsimonious model which is robust to the presence of contamination in the data. In this paper, we present a sparse linear approach which detects outliers by using a highly robust regression method. The model with optimal predictive ability as measured by the median absolute deviation of the prediction errors on JackKnife subsets is used to detect outliers. The performance of the proposed method is evaluated on a simulation study with a different type of outliers and high leverage points and also on a real data set. |
id |
RCAP_2b556520756d89a41a7f572047387135 |
---|---|
oai_identifier_str |
oai:repositorium.sdum.uminho.pt:1822/72374 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
A robust sparce linear approach for contamined dataJackknifeOutlier detectionRobust variable selectionSparsityCiências Naturais::MatemáticasScience & TechnologyA challenging problem in a linear regression model is to select a parsimonious model which is robust to the presence of contamination in the data. In this paper, we present a sparse linear approach which detects outliers by using a highly robust regression method. The model with optimal predictive ability as measured by the median absolute deviation of the prediction errors on JackKnife subsets is used to detect outliers. The performance of the proposed method is evaluated on a simulation study with a different type of outliers and high leverage points and also on a real data set.The authors would like to thank to the Associate Editor and the reviewers for their useful com ments which led to a considerable improvement of the manuscript. This work was supported by FEDER Funds through “Programa Operacional Factores de Competitividade-COMPETE” and by Portuguese Funds through FCT “Fundação para a Ciência e a Tecnologia”, within the SFRH/BD/51164/2010 and PEst-OE/MAT/UI0013/2017.Taylor & FrancisUniversidade do MinhoShahriari, ShirinFaria, SusanaGonçalves, A. Manuela2019-03-282019-03-28T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/1822/72374eng0361-09181532-414110.1080/03610918.2019.1588304https://doi.org/10.1080/03610918.2019.1588304info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-07-21T12:52:13Zoai:repositorium.sdum.uminho.pt:1822/72374Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T19:51:17.354343Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
A robust sparce linear approach for contamined data |
title |
A robust sparce linear approach for contamined data |
spellingShingle |
A robust sparce linear approach for contamined data Shahriari, Shirin Jackknife Outlier detection Robust variable selection Sparsity Ciências Naturais::Matemáticas Science & Technology |
title_short |
A robust sparce linear approach for contamined data |
title_full |
A robust sparce linear approach for contamined data |
title_fullStr |
A robust sparce linear approach for contamined data |
title_full_unstemmed |
A robust sparce linear approach for contamined data |
title_sort |
A robust sparce linear approach for contamined data |
author |
Shahriari, Shirin |
author_facet |
Shahriari, Shirin Faria, Susana Gonçalves, A. Manuela |
author_role |
author |
author2 |
Faria, Susana Gonçalves, A. Manuela |
author2_role |
author author |
dc.contributor.none.fl_str_mv |
Universidade do Minho |
dc.contributor.author.fl_str_mv |
Shahriari, Shirin Faria, Susana Gonçalves, A. Manuela |
dc.subject.por.fl_str_mv |
Jackknife Outlier detection Robust variable selection Sparsity Ciências Naturais::Matemáticas Science & Technology |
topic |
Jackknife Outlier detection Robust variable selection Sparsity Ciências Naturais::Matemáticas Science & Technology |
description |
A challenging problem in a linear regression model is to select a parsimonious model which is robust to the presence of contamination in the data. In this paper, we present a sparse linear approach which detects outliers by using a highly robust regression method. The model with optimal predictive ability as measured by the median absolute deviation of the prediction errors on JackKnife subsets is used to detect outliers. The performance of the proposed method is evaluated on a simulation study with a different type of outliers and high leverage points and also on a real data set. |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019-03-28 2019-03-28T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/1822/72374 |
url |
http://hdl.handle.net/1822/72374 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
0361-0918 1532-4141 10.1080/03610918.2019.1588304 https://doi.org/10.1080/03610918.2019.1588304 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Taylor & Francis |
publisher.none.fl_str_mv |
Taylor & Francis |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799133100833243136 |