Hybrid Matched Filter Detection Spectrum Sensing
Autor(a) principal: | |
---|---|
Data de Publicação: | 2021 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10400.6/11449 |
Resumo: | The radio frequency spectrum is getting more congested day by day due to the growth of wireless devices, applications, and the arrival of fifth generation (5G) mobile communications. This happens because the radio spectrum is a natural resource that has a restricted existence. Access to all devices can be granted, but in a more efficient way. To resolve the issue, cognitive radio technology has come out as a way, because it is possible to sense the radio spectrum in the neighboring. Spectrum sensing has been recognized as an important technology, in cognitive radio networks, to allow secondary users (SUs) to detect spectrum holes and opportunistically access primary licensed spectrum band without harmful interference. This paper considers the Energy Detection (ED) and Matched Filter Detection (MFD) spectrum sensing techniques as the baseline for a study where the so-called Hybrid Matched Filter Detection (Hybrid MFD) was proposed. Apart from an analytical approach, Monte Carlo simulations have been performed in MATLAB. These simulations aimed at understanding how the variation of parameters like the probability of false alarm, the signal-to-noise ratio (SNR) and the number of samples, can affect the probability of miss-detection. Simulation results show that i) higher probability of miss-detection is achieved for the ED spectrum sensing technique when compared to the MFD and Hybrid MFD techniques; ii) More importantly, the proposed Hybrid MFD technique outperforms MFD in terms of the ability to detect the presence of a primary user in licensed spectrum, for a probability of false alarm slightly lower than 0.5, low number of samples and low signal-to-noise ratio. |
id |
RCAP_2b849d170d779921f3848cfeddbffb2b |
---|---|
oai_identifier_str |
oai:ubibliorum.ubi.pt:10400.6/11449 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Hybrid Matched Filter Detection Spectrum SensingRadio frequency spectrum5GCognitive radioSpectrum sensingHybrid Matched Filter DetectionThe radio frequency spectrum is getting more congested day by day due to the growth of wireless devices, applications, and the arrival of fifth generation (5G) mobile communications. This happens because the radio spectrum is a natural resource that has a restricted existence. Access to all devices can be granted, but in a more efficient way. To resolve the issue, cognitive radio technology has come out as a way, because it is possible to sense the radio spectrum in the neighboring. Spectrum sensing has been recognized as an important technology, in cognitive radio networks, to allow secondary users (SUs) to detect spectrum holes and opportunistically access primary licensed spectrum band without harmful interference. This paper considers the Energy Detection (ED) and Matched Filter Detection (MFD) spectrum sensing techniques as the baseline for a study where the so-called Hybrid Matched Filter Detection (Hybrid MFD) was proposed. Apart from an analytical approach, Monte Carlo simulations have been performed in MATLAB. These simulations aimed at understanding how the variation of parameters like the probability of false alarm, the signal-to-noise ratio (SNR) and the number of samples, can affect the probability of miss-detection. Simulation results show that i) higher probability of miss-detection is achieved for the ED spectrum sensing technique when compared to the MFD and Hybrid MFD techniques; ii) More importantly, the proposed Hybrid MFD technique outperforms MFD in terms of the ability to detect the presence of a primary user in licensed spectrum, for a probability of false alarm slightly lower than 0.5, low number of samples and low signal-to-noise ratio.IEEEuBibliorumBrito, AntónioSebastião, PedroVelez, Fernando J.2021-12-14T09:56:37Z2021-122021-12-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10400.6/11449engAntónio Brito, Pedro Sebastião and Fernando J. Velez, “Hybrid Matched Filter Detection Spectrum Sensing,” IEEE Access, Dec. 2021, doi: 10.1109/ACCESS.2021.3134796.10.1109/ACCESS.2021.3134796info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-12-15T09:53:55Zoai:ubibliorum.ubi.pt:10400.6/11449Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T00:51:14.418509Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Hybrid Matched Filter Detection Spectrum Sensing |
title |
Hybrid Matched Filter Detection Spectrum Sensing |
spellingShingle |
Hybrid Matched Filter Detection Spectrum Sensing Brito, António Radio frequency spectrum 5G Cognitive radio Spectrum sensing Hybrid Matched Filter Detection |
title_short |
Hybrid Matched Filter Detection Spectrum Sensing |
title_full |
Hybrid Matched Filter Detection Spectrum Sensing |
title_fullStr |
Hybrid Matched Filter Detection Spectrum Sensing |
title_full_unstemmed |
Hybrid Matched Filter Detection Spectrum Sensing |
title_sort |
Hybrid Matched Filter Detection Spectrum Sensing |
author |
Brito, António |
author_facet |
Brito, António Sebastião, Pedro Velez, Fernando J. |
author_role |
author |
author2 |
Sebastião, Pedro Velez, Fernando J. |
author2_role |
author author |
dc.contributor.none.fl_str_mv |
uBibliorum |
dc.contributor.author.fl_str_mv |
Brito, António Sebastião, Pedro Velez, Fernando J. |
dc.subject.por.fl_str_mv |
Radio frequency spectrum 5G Cognitive radio Spectrum sensing Hybrid Matched Filter Detection |
topic |
Radio frequency spectrum 5G Cognitive radio Spectrum sensing Hybrid Matched Filter Detection |
description |
The radio frequency spectrum is getting more congested day by day due to the growth of wireless devices, applications, and the arrival of fifth generation (5G) mobile communications. This happens because the radio spectrum is a natural resource that has a restricted existence. Access to all devices can be granted, but in a more efficient way. To resolve the issue, cognitive radio technology has come out as a way, because it is possible to sense the radio spectrum in the neighboring. Spectrum sensing has been recognized as an important technology, in cognitive radio networks, to allow secondary users (SUs) to detect spectrum holes and opportunistically access primary licensed spectrum band without harmful interference. This paper considers the Energy Detection (ED) and Matched Filter Detection (MFD) spectrum sensing techniques as the baseline for a study where the so-called Hybrid Matched Filter Detection (Hybrid MFD) was proposed. Apart from an analytical approach, Monte Carlo simulations have been performed in MATLAB. These simulations aimed at understanding how the variation of parameters like the probability of false alarm, the signal-to-noise ratio (SNR) and the number of samples, can affect the probability of miss-detection. Simulation results show that i) higher probability of miss-detection is achieved for the ED spectrum sensing technique when compared to the MFD and Hybrid MFD techniques; ii) More importantly, the proposed Hybrid MFD technique outperforms MFD in terms of the ability to detect the presence of a primary user in licensed spectrum, for a probability of false alarm slightly lower than 0.5, low number of samples and low signal-to-noise ratio. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-12-14T09:56:37Z 2021-12 2021-12-01T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10400.6/11449 |
url |
http://hdl.handle.net/10400.6/11449 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
António Brito, Pedro Sebastião and Fernando J. Velez, “Hybrid Matched Filter Detection Spectrum Sensing,” IEEE Access, Dec. 2021, doi: 10.1109/ACCESS.2021.3134796. 10.1109/ACCESS.2021.3134796 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
IEEE |
publisher.none.fl_str_mv |
IEEE |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799136401914068992 |