Hydrometallurgical recovery of platinum-group metals from spent auto-catalysts: Focus on leaching and solvent extraction

Detalhes bibliográficos
Autor(a) principal: Paiva, A. P.
Data de Publicação: 2022
Outros Autores: Piedras, Francisco Vega, Rodrigues, Pedro G., Nogueira, Carlos
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10400.9/3860
Resumo: ABSTRACT: To ensure the supply of raw materials for products of extreme importance in strategic sectors, the recovery of critical metals from secondary sources becomes increasingly urgent. Platinum group metals (PGMs), being rare and very valuable, fall into this demand, and the catalytic converters that contain them are recognized as one of the main sources. Hydrometallurgical processes have been proposed as an alternative to pyrometallurgical ones, with leaching and separation by solvent extraction being core operations in this type of processing. This article investigates these two operations, seeking to optimize conditions and propose new arrangements to improve them. Two different catalyst samples were considered in the experimental work. Leaching was carried out involving concentrated HCl solutions (with H2O2 as oxidant) and low liquid/solid ratios, seeking to maximize PGMs recovery, guaranteeing their high concentration in leachates and minimizing aluminum co-dissolution. Cerium leaching was also followed since this is a rare-earth metal with potential interest. Temperature, HCl concentration, liquid/solid ratio (L/S), time and particle size factors were evaluated, and the optimized conditions found were 11.6 mol L-1 HCl, 1%vol H2O2, 60 C, L/S = 2 L kg(-1) and 3 h, leading to PGM yields of 90-98% Pt, 99% Pd and 70-96% Rh, and leachate compositions of 0.41-0.78 g L-1 Pt, 1.6 g L-1 Pd, 0.062-0.066 g L-1 Rh, depending on the catalyst sample.& nbsp;For solvent extraction (SX), several commercial extractants dissolved/diluted in toluene were checked, firstly with a model solution, and then applied to the real spent auto-catalyst (SAC) leachates produced in-situ. The overall results showed that the most promising SX systems among those tested were Cyanex (R) 471X and Cyphos (R) IL 101. Cyanex (R) 471X allowed the quantitative extraction of Pd(II) and Fe(III), but the latter was conveniently scrubbed by water prior to Pd(II) stripping by an acidic thiourea solution. Pt(IV) and Pd(II) extraction values by Cyphos (R) IL 101 were very encouraging, as only Fe(III) and Zn(II) were appreciably co-extracted, however, scrubbing of the contaminating metals, and Pd(II) and Pt(IV) stripping, did not work. Hence, investigation to find proper scrubbing/stripping agents for Cyphos (R) IL 101 SX system, to recover PGMs from recycled SACs, is further needed.
id RCAP_2bced52e331ad75f8e3bc219fa13b92b
oai_identifier_str oai:repositorio.lneg.pt:10400.9/3860
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Hydrometallurgical recovery of platinum-group metals from spent auto-catalysts: Focus on leaching and solvent extractionHydrometallurgyRecyclingLeachingPlatinum-group metalsSolvent extractionABSTRACT: To ensure the supply of raw materials for products of extreme importance in strategic sectors, the recovery of critical metals from secondary sources becomes increasingly urgent. Platinum group metals (PGMs), being rare and very valuable, fall into this demand, and the catalytic converters that contain them are recognized as one of the main sources. Hydrometallurgical processes have been proposed as an alternative to pyrometallurgical ones, with leaching and separation by solvent extraction being core operations in this type of processing. This article investigates these two operations, seeking to optimize conditions and propose new arrangements to improve them. Two different catalyst samples were considered in the experimental work. Leaching was carried out involving concentrated HCl solutions (with H2O2 as oxidant) and low liquid/solid ratios, seeking to maximize PGMs recovery, guaranteeing their high concentration in leachates and minimizing aluminum co-dissolution. Cerium leaching was also followed since this is a rare-earth metal with potential interest. Temperature, HCl concentration, liquid/solid ratio (L/S), time and particle size factors were evaluated, and the optimized conditions found were 11.6 mol L-1 HCl, 1%vol H2O2, 60 C, L/S = 2 L kg(-1) and 3 h, leading to PGM yields of 90-98% Pt, 99% Pd and 70-96% Rh, and leachate compositions of 0.41-0.78 g L-1 Pt, 1.6 g L-1 Pd, 0.062-0.066 g L-1 Rh, depending on the catalyst sample.& nbsp;For solvent extraction (SX), several commercial extractants dissolved/diluted in toluene were checked, firstly with a model solution, and then applied to the real spent auto-catalyst (SAC) leachates produced in-situ. The overall results showed that the most promising SX systems among those tested were Cyanex (R) 471X and Cyphos (R) IL 101. Cyanex (R) 471X allowed the quantitative extraction of Pd(II) and Fe(III), but the latter was conveniently scrubbed by water prior to Pd(II) stripping by an acidic thiourea solution. Pt(IV) and Pd(II) extraction values by Cyphos (R) IL 101 were very encouraging, as only Fe(III) and Zn(II) were appreciably co-extracted, however, scrubbing of the contaminating metals, and Pd(II) and Pt(IV) stripping, did not work. Hence, investigation to find proper scrubbing/stripping agents for Cyphos (R) IL 101 SX system, to recover PGMs from recycled SACs, is further needed.ElsevierRepositório do LNEGPaiva, A. P.Piedras, Francisco VegaRodrigues, Pedro G.Nogueira, Carlos2022-05-19T10:08:18Z2022-04-01T00:00:00Z2022-04-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10400.9/3860engPaiva, A.P... [et.al.] - Hydrometallurgical recovery of platinum-group metals from spent auto-catalysts: Focus on leaching and solvent extraction. In: Separation and Purification Technology, 2022, Vol. 286, article nº 1204741383-586610.1016/j.seppur.2022.1204741873-3794info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2022-09-06T12:29:42Zoai:repositorio.lneg.pt:10400.9/3860Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T15:37:06.985867Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Hydrometallurgical recovery of platinum-group metals from spent auto-catalysts: Focus on leaching and solvent extraction
title Hydrometallurgical recovery of platinum-group metals from spent auto-catalysts: Focus on leaching and solvent extraction
spellingShingle Hydrometallurgical recovery of platinum-group metals from spent auto-catalysts: Focus on leaching and solvent extraction
Paiva, A. P.
Hydrometallurgy
Recycling
Leaching
Platinum-group metals
Solvent extraction
title_short Hydrometallurgical recovery of platinum-group metals from spent auto-catalysts: Focus on leaching and solvent extraction
title_full Hydrometallurgical recovery of platinum-group metals from spent auto-catalysts: Focus on leaching and solvent extraction
title_fullStr Hydrometallurgical recovery of platinum-group metals from spent auto-catalysts: Focus on leaching and solvent extraction
title_full_unstemmed Hydrometallurgical recovery of platinum-group metals from spent auto-catalysts: Focus on leaching and solvent extraction
title_sort Hydrometallurgical recovery of platinum-group metals from spent auto-catalysts: Focus on leaching and solvent extraction
author Paiva, A. P.
author_facet Paiva, A. P.
Piedras, Francisco Vega
Rodrigues, Pedro G.
Nogueira, Carlos
author_role author
author2 Piedras, Francisco Vega
Rodrigues, Pedro G.
Nogueira, Carlos
author2_role author
author
author
dc.contributor.none.fl_str_mv Repositório do LNEG
dc.contributor.author.fl_str_mv Paiva, A. P.
Piedras, Francisco Vega
Rodrigues, Pedro G.
Nogueira, Carlos
dc.subject.por.fl_str_mv Hydrometallurgy
Recycling
Leaching
Platinum-group metals
Solvent extraction
topic Hydrometallurgy
Recycling
Leaching
Platinum-group metals
Solvent extraction
description ABSTRACT: To ensure the supply of raw materials for products of extreme importance in strategic sectors, the recovery of critical metals from secondary sources becomes increasingly urgent. Platinum group metals (PGMs), being rare and very valuable, fall into this demand, and the catalytic converters that contain them are recognized as one of the main sources. Hydrometallurgical processes have been proposed as an alternative to pyrometallurgical ones, with leaching and separation by solvent extraction being core operations in this type of processing. This article investigates these two operations, seeking to optimize conditions and propose new arrangements to improve them. Two different catalyst samples were considered in the experimental work. Leaching was carried out involving concentrated HCl solutions (with H2O2 as oxidant) and low liquid/solid ratios, seeking to maximize PGMs recovery, guaranteeing their high concentration in leachates and minimizing aluminum co-dissolution. Cerium leaching was also followed since this is a rare-earth metal with potential interest. Temperature, HCl concentration, liquid/solid ratio (L/S), time and particle size factors were evaluated, and the optimized conditions found were 11.6 mol L-1 HCl, 1%vol H2O2, 60 C, L/S = 2 L kg(-1) and 3 h, leading to PGM yields of 90-98% Pt, 99% Pd and 70-96% Rh, and leachate compositions of 0.41-0.78 g L-1 Pt, 1.6 g L-1 Pd, 0.062-0.066 g L-1 Rh, depending on the catalyst sample.& nbsp;For solvent extraction (SX), several commercial extractants dissolved/diluted in toluene were checked, firstly with a model solution, and then applied to the real spent auto-catalyst (SAC) leachates produced in-situ. The overall results showed that the most promising SX systems among those tested were Cyanex (R) 471X and Cyphos (R) IL 101. Cyanex (R) 471X allowed the quantitative extraction of Pd(II) and Fe(III), but the latter was conveniently scrubbed by water prior to Pd(II) stripping by an acidic thiourea solution. Pt(IV) and Pd(II) extraction values by Cyphos (R) IL 101 were very encouraging, as only Fe(III) and Zn(II) were appreciably co-extracted, however, scrubbing of the contaminating metals, and Pd(II) and Pt(IV) stripping, did not work. Hence, investigation to find proper scrubbing/stripping agents for Cyphos (R) IL 101 SX system, to recover PGMs from recycled SACs, is further needed.
publishDate 2022
dc.date.none.fl_str_mv 2022-05-19T10:08:18Z
2022-04-01T00:00:00Z
2022-04-01T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10400.9/3860
url http://hdl.handle.net/10400.9/3860
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Paiva, A.P... [et.al.] - Hydrometallurgical recovery of platinum-group metals from spent auto-catalysts: Focus on leaching and solvent extraction. In: Separation and Purification Technology, 2022, Vol. 286, article nº 120474
1383-5866
10.1016/j.seppur.2022.120474
1873-3794
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Elsevier
publisher.none.fl_str_mv Elsevier
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799130236955131904