OmniSARS2: A Highly Sensitive and Specific RT-qPCR-Based COVID-19 Diagnostic Method Designed to Withstand SARS-CoV-2 Lineage Evolution

Detalhes bibliográficos
Autor(a) principal: Carvalho-Correia, Eduarda
Data de Publicação: 2021
Outros Autores: Calçada, Carla, Branca, Fernando, Estévez-Gómez, Nuria, De Chiara, Loretta, Varela, Nair, Gallego-García, Pilar, Posada, David, Sousa, Hugo, Sousa, João, Veiga, Maria Isabel, Osório, Nuno S.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10316/95897
https://doi.org/10.3390/biomedicines9101314
Resumo: Extensive transmission of SARS-CoV-2 during the COVID-19 pandemic allowed the generation of thousands of mutations within its genome. While several of these become rare, others largely increase in prevalence, potentially jeopardizing the sensitivity of PCR-based diagnostics. Taking advantage of SARS-CoV-2 genomic knowledge, we designed a one-step probe-based multiplex RT-qPCR (OmniSARS2) to simultaneously detect short fragments of the SARS-CoV-2 genome in ORF1ab, E gene and S gene. Comparative genomics of the most common SARS-CoV-2 lineages, other human betacoronavirus and alphacoronavirus, was the basis for this design, targeting both highly conserved regions across SARS-CoV-2 lineages and variable or absent in other Coronaviridae viruses. The highest analytical sensitivity of this method for SARS-CoV-2 detection was 94.2 copies/mL at 95% detection probability (~1 copy per total reaction volume) for the S gene assay, matching the most sensitive available methods. In vitro specificity tests, performed using reference strains, showed no cross-reactivity with other human coronavirus or common pathogens. The method was compared with commercially available methods and detected the virus in clinical samples encompassing different SARS-CoV-2 lineages, including B.1, B.1.1, B.1.177 or B.1.1.7 and rarer lineages. OmniSARS2 revealed a sensitive and specific viral detection method that is less likely to be affected by lineage evolution oligonucleotide–sample mismatch, of relevance to ensure the accuracy of COVID-19 molecular diagnostic methods. © 2021 by the authors. Licensee MDPI, Basel, Switzerland.
id RCAP_2bfc5317eb03255eb652b54fcdc39428
oai_identifier_str oai:estudogeral.uc.pt:10316/95897
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling OmniSARS2: A Highly Sensitive and Specific RT-qPCR-Based COVID-19 Diagnostic Method Designed to Withstand SARS-CoV-2 Lineage EvolutionB.1.1.7COVID-19RT-qPCRSARS-CoV-2Extensive transmission of SARS-CoV-2 during the COVID-19 pandemic allowed the generation of thousands of mutations within its genome. While several of these become rare, others largely increase in prevalence, potentially jeopardizing the sensitivity of PCR-based diagnostics. Taking advantage of SARS-CoV-2 genomic knowledge, we designed a one-step probe-based multiplex RT-qPCR (OmniSARS2) to simultaneously detect short fragments of the SARS-CoV-2 genome in ORF1ab, E gene and S gene. Comparative genomics of the most common SARS-CoV-2 lineages, other human betacoronavirus and alphacoronavirus, was the basis for this design, targeting both highly conserved regions across SARS-CoV-2 lineages and variable or absent in other Coronaviridae viruses. The highest analytical sensitivity of this method for SARS-CoV-2 detection was 94.2 copies/mL at 95% detection probability (~1 copy per total reaction volume) for the S gene assay, matching the most sensitive available methods. In vitro specificity tests, performed using reference strains, showed no cross-reactivity with other human coronavirus or common pathogens. The method was compared with commercially available methods and detected the virus in clinical samples encompassing different SARS-CoV-2 lineages, including B.1, B.1.1, B.1.177 or B.1.1.7 and rarer lineages. OmniSARS2 revealed a sensitive and specific viral detection method that is less likely to be affected by lineage evolution oligonucleotide–sample mismatch, of relevance to ensure the accuracy of COVID-19 molecular diagnostic methods. © 2021 by the authors. Licensee MDPI, Basel, Switzerland.Funding: This work has been funded by Portuguese National funds, through the Foundation for Science and Technology (FCT) (project UIDB/50026/2020, UIDP/50026/2020 and RESEARCH 4 COVID-19 1st edtion_208; fellowships: PD/BD/127826/2016 to C. C. and contract funding 2020.03113.CEECIND to M.I.V.); by the projects NORTE-01-0145-FEDER-072555 and NORTE-01-0145-FEDER-000039, supported by Norte Portugal Regional Operational Programme (NORTE 2020), under the PORTUGAL 2020 Partnership Agreement, through the European Regional Development Fund (ERDF). Lineage assignments were provided by the EPICOVIGAL consortium, funded by FONDO SUPERA COVID-19 CRUE/CSIC/Banco Santander and Programa TRASLACIONA COVID-19 (Ref CT850A-2) from Xunta de Galicia.2021info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://hdl.handle.net/10316/95897http://hdl.handle.net/10316/95897https://doi.org/10.3390/biomedicines9101314eng2227-9059Carvalho-Correia, EduardaCalçada, CarlaBranca, FernandoEstévez-Gómez, NuriaDe Chiara, LorettaVarela, NairGallego-García, PilarPosada, DavidSousa, HugoSousa, JoãoVeiga, Maria IsabelOsório, Nuno S.info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2022-11-25T10:37:38Zoai:estudogeral.uc.pt:10316/95897Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T21:14:17.788094Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv OmniSARS2: A Highly Sensitive and Specific RT-qPCR-Based COVID-19 Diagnostic Method Designed to Withstand SARS-CoV-2 Lineage Evolution
title OmniSARS2: A Highly Sensitive and Specific RT-qPCR-Based COVID-19 Diagnostic Method Designed to Withstand SARS-CoV-2 Lineage Evolution
spellingShingle OmniSARS2: A Highly Sensitive and Specific RT-qPCR-Based COVID-19 Diagnostic Method Designed to Withstand SARS-CoV-2 Lineage Evolution
Carvalho-Correia, Eduarda
B.1.1.7
COVID-19
RT-qPCR
SARS-CoV-2
title_short OmniSARS2: A Highly Sensitive and Specific RT-qPCR-Based COVID-19 Diagnostic Method Designed to Withstand SARS-CoV-2 Lineage Evolution
title_full OmniSARS2: A Highly Sensitive and Specific RT-qPCR-Based COVID-19 Diagnostic Method Designed to Withstand SARS-CoV-2 Lineage Evolution
title_fullStr OmniSARS2: A Highly Sensitive and Specific RT-qPCR-Based COVID-19 Diagnostic Method Designed to Withstand SARS-CoV-2 Lineage Evolution
title_full_unstemmed OmniSARS2: A Highly Sensitive and Specific RT-qPCR-Based COVID-19 Diagnostic Method Designed to Withstand SARS-CoV-2 Lineage Evolution
title_sort OmniSARS2: A Highly Sensitive and Specific RT-qPCR-Based COVID-19 Diagnostic Method Designed to Withstand SARS-CoV-2 Lineage Evolution
author Carvalho-Correia, Eduarda
author_facet Carvalho-Correia, Eduarda
Calçada, Carla
Branca, Fernando
Estévez-Gómez, Nuria
De Chiara, Loretta
Varela, Nair
Gallego-García, Pilar
Posada, David
Sousa, Hugo
Sousa, João
Veiga, Maria Isabel
Osório, Nuno S.
author_role author
author2 Calçada, Carla
Branca, Fernando
Estévez-Gómez, Nuria
De Chiara, Loretta
Varela, Nair
Gallego-García, Pilar
Posada, David
Sousa, Hugo
Sousa, João
Veiga, Maria Isabel
Osório, Nuno S.
author2_role author
author
author
author
author
author
author
author
author
author
author
dc.contributor.author.fl_str_mv Carvalho-Correia, Eduarda
Calçada, Carla
Branca, Fernando
Estévez-Gómez, Nuria
De Chiara, Loretta
Varela, Nair
Gallego-García, Pilar
Posada, David
Sousa, Hugo
Sousa, João
Veiga, Maria Isabel
Osório, Nuno S.
dc.subject.por.fl_str_mv B.1.1.7
COVID-19
RT-qPCR
SARS-CoV-2
topic B.1.1.7
COVID-19
RT-qPCR
SARS-CoV-2
description Extensive transmission of SARS-CoV-2 during the COVID-19 pandemic allowed the generation of thousands of mutations within its genome. While several of these become rare, others largely increase in prevalence, potentially jeopardizing the sensitivity of PCR-based diagnostics. Taking advantage of SARS-CoV-2 genomic knowledge, we designed a one-step probe-based multiplex RT-qPCR (OmniSARS2) to simultaneously detect short fragments of the SARS-CoV-2 genome in ORF1ab, E gene and S gene. Comparative genomics of the most common SARS-CoV-2 lineages, other human betacoronavirus and alphacoronavirus, was the basis for this design, targeting both highly conserved regions across SARS-CoV-2 lineages and variable or absent in other Coronaviridae viruses. The highest analytical sensitivity of this method for SARS-CoV-2 detection was 94.2 copies/mL at 95% detection probability (~1 copy per total reaction volume) for the S gene assay, matching the most sensitive available methods. In vitro specificity tests, performed using reference strains, showed no cross-reactivity with other human coronavirus or common pathogens. The method was compared with commercially available methods and detected the virus in clinical samples encompassing different SARS-CoV-2 lineages, including B.1, B.1.1, B.1.177 or B.1.1.7 and rarer lineages. OmniSARS2 revealed a sensitive and specific viral detection method that is less likely to be affected by lineage evolution oligonucleotide–sample mismatch, of relevance to ensure the accuracy of COVID-19 molecular diagnostic methods. © 2021 by the authors. Licensee MDPI, Basel, Switzerland.
publishDate 2021
dc.date.none.fl_str_mv 2021
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10316/95897
http://hdl.handle.net/10316/95897
https://doi.org/10.3390/biomedicines9101314
url http://hdl.handle.net/10316/95897
https://doi.org/10.3390/biomedicines9101314
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 2227-9059
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799134040527208448