Forecasting oil & gas etfs´ price movements using convolutional neural networks
Autor(a) principal: | |
---|---|
Data de Publicação: | 2021 |
Tipo de documento: | Dissertação |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10362/156853 |
Resumo: | Thanks to advances in processing power, we have seen the revival of artificial intelligence after the 1980s, and algorithmic trading has become quite popular in the last two decades. In this paper, a convolutional neural network for image recognition was constructed. The CNN recognises patterns in 2D images generated from financial data and classifies them as BUY, SELL or HOLD. The analysed ETF, XLE, is from the Oil & Gas sector. The results are evaluated computationally and financially and compared to other industries. Overall, the CNN approach seems promising but generally, it was not possible to outperform the Buy&Hold strategy. |
id |
RCAP_2c004be69a736847de9524728b348c09 |
---|---|
oai_identifier_str |
oai:run.unl.pt:10362/156853 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Forecasting oil & gas etfs´ price movements using convolutional neural networksForecastingDeep learningTechnical analysisOil & gas industryConvolutional neural networksDomínio/Área Científica::Ciências Sociais::Economia e GestãoThanks to advances in processing power, we have seen the revival of artificial intelligence after the 1980s, and algorithmic trading has become quite popular in the last two decades. In this paper, a convolutional neural network for image recognition was constructed. The CNN recognises patterns in 2D images generated from financial data and classifies them as BUY, SELL or HOLD. The analysed ETF, XLE, is from the Oil & Gas sector. The results are evaluated computationally and financially and compared to other industries. Overall, the CNN approach seems promising but generally, it was not possible to outperform the Buy&Hold strategy.Casqueiro, Patrícia Xufre Gonçalves da SilvaRUNSerafin, Marc Lorenzo2023-08-25T13:43:45Z2022-01-212021-12-172022-01-21T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10362/156853TID:202997359enginfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-03-11T05:39:09Zoai:run.unl.pt:10362/156853Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:56:28.667179Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Forecasting oil & gas etfs´ price movements using convolutional neural networks |
title |
Forecasting oil & gas etfs´ price movements using convolutional neural networks |
spellingShingle |
Forecasting oil & gas etfs´ price movements using convolutional neural networks Serafin, Marc Lorenzo Forecasting Deep learning Technical analysis Oil & gas industry Convolutional neural networks Domínio/Área Científica::Ciências Sociais::Economia e Gestão |
title_short |
Forecasting oil & gas etfs´ price movements using convolutional neural networks |
title_full |
Forecasting oil & gas etfs´ price movements using convolutional neural networks |
title_fullStr |
Forecasting oil & gas etfs´ price movements using convolutional neural networks |
title_full_unstemmed |
Forecasting oil & gas etfs´ price movements using convolutional neural networks |
title_sort |
Forecasting oil & gas etfs´ price movements using convolutional neural networks |
author |
Serafin, Marc Lorenzo |
author_facet |
Serafin, Marc Lorenzo |
author_role |
author |
dc.contributor.none.fl_str_mv |
Casqueiro, Patrícia Xufre Gonçalves da Silva RUN |
dc.contributor.author.fl_str_mv |
Serafin, Marc Lorenzo |
dc.subject.por.fl_str_mv |
Forecasting Deep learning Technical analysis Oil & gas industry Convolutional neural networks Domínio/Área Científica::Ciências Sociais::Economia e Gestão |
topic |
Forecasting Deep learning Technical analysis Oil & gas industry Convolutional neural networks Domínio/Área Científica::Ciências Sociais::Economia e Gestão |
description |
Thanks to advances in processing power, we have seen the revival of artificial intelligence after the 1980s, and algorithmic trading has become quite popular in the last two decades. In this paper, a convolutional neural network for image recognition was constructed. The CNN recognises patterns in 2D images generated from financial data and classifies them as BUY, SELL or HOLD. The analysed ETF, XLE, is from the Oil & Gas sector. The results are evaluated computationally and financially and compared to other industries. Overall, the CNN approach seems promising but generally, it was not possible to outperform the Buy&Hold strategy. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-12-17 2022-01-21 2022-01-21T00:00:00Z 2023-08-25T13:43:45Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10362/156853 TID:202997359 |
url |
http://hdl.handle.net/10362/156853 |
identifier_str_mv |
TID:202997359 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799138149853560832 |