Forecasting oil & gas etfs´ price movements using convolutional neural networks

Detalhes bibliográficos
Autor(a) principal: Serafin, Marc Lorenzo
Data de Publicação: 2021
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10362/156853
Resumo: Thanks to advances in processing power, we have seen the revival of artificial intelligence after the 1980s, and algorithmic trading has become quite popular in the last two decades. In this paper, a convolutional neural network for image recognition was constructed. The CNN recognises patterns in 2D images generated from financial data and classifies them as BUY, SELL or HOLD. The analysed ETF, XLE, is from the Oil & Gas sector. The results are evaluated computationally and financially and compared to other industries. Overall, the CNN approach seems promising but generally, it was not possible to outperform the Buy&Hold strategy.
id RCAP_2c004be69a736847de9524728b348c09
oai_identifier_str oai:run.unl.pt:10362/156853
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Forecasting oil & gas etfs´ price movements using convolutional neural networksForecastingDeep learningTechnical analysisOil & gas industryConvolutional neural networksDomínio/Área Científica::Ciências Sociais::Economia e GestãoThanks to advances in processing power, we have seen the revival of artificial intelligence after the 1980s, and algorithmic trading has become quite popular in the last two decades. In this paper, a convolutional neural network for image recognition was constructed. The CNN recognises patterns in 2D images generated from financial data and classifies them as BUY, SELL or HOLD. The analysed ETF, XLE, is from the Oil & Gas sector. The results are evaluated computationally and financially and compared to other industries. Overall, the CNN approach seems promising but generally, it was not possible to outperform the Buy&Hold strategy.Casqueiro, Patrícia Xufre Gonçalves da SilvaRUNSerafin, Marc Lorenzo2023-08-25T13:43:45Z2022-01-212021-12-172022-01-21T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10362/156853TID:202997359enginfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-03-11T05:39:09Zoai:run.unl.pt:10362/156853Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:56:28.667179Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Forecasting oil & gas etfs´ price movements using convolutional neural networks
title Forecasting oil & gas etfs´ price movements using convolutional neural networks
spellingShingle Forecasting oil & gas etfs´ price movements using convolutional neural networks
Serafin, Marc Lorenzo
Forecasting
Deep learning
Technical analysis
Oil & gas industry
Convolutional neural networks
Domínio/Área Científica::Ciências Sociais::Economia e Gestão
title_short Forecasting oil & gas etfs´ price movements using convolutional neural networks
title_full Forecasting oil & gas etfs´ price movements using convolutional neural networks
title_fullStr Forecasting oil & gas etfs´ price movements using convolutional neural networks
title_full_unstemmed Forecasting oil & gas etfs´ price movements using convolutional neural networks
title_sort Forecasting oil & gas etfs´ price movements using convolutional neural networks
author Serafin, Marc Lorenzo
author_facet Serafin, Marc Lorenzo
author_role author
dc.contributor.none.fl_str_mv Casqueiro, Patrícia Xufre Gonçalves da Silva
RUN
dc.contributor.author.fl_str_mv Serafin, Marc Lorenzo
dc.subject.por.fl_str_mv Forecasting
Deep learning
Technical analysis
Oil & gas industry
Convolutional neural networks
Domínio/Área Científica::Ciências Sociais::Economia e Gestão
topic Forecasting
Deep learning
Technical analysis
Oil & gas industry
Convolutional neural networks
Domínio/Área Científica::Ciências Sociais::Economia e Gestão
description Thanks to advances in processing power, we have seen the revival of artificial intelligence after the 1980s, and algorithmic trading has become quite popular in the last two decades. In this paper, a convolutional neural network for image recognition was constructed. The CNN recognises patterns in 2D images generated from financial data and classifies them as BUY, SELL or HOLD. The analysed ETF, XLE, is from the Oil & Gas sector. The results are evaluated computationally and financially and compared to other industries. Overall, the CNN approach seems promising but generally, it was not possible to outperform the Buy&Hold strategy.
publishDate 2021
dc.date.none.fl_str_mv 2021-12-17
2022-01-21
2022-01-21T00:00:00Z
2023-08-25T13:43:45Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10362/156853
TID:202997359
url http://hdl.handle.net/10362/156853
identifier_str_mv TID:202997359
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799138149853560832