Study and development of a solar radiation predicting algorithm based on ECMWF's forecasts and ANNs
Autor(a) principal: | |
---|---|
Data de Publicação: | 2018 |
Outros Autores: | , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10174/37234 https://doi.org/10.24752/gre.1.0_43 |
Resumo: | This paper presents a study on the influence of Sun-Earth geometry and atmospheric variables on the predictions of solar global irradiation (GHI) obtained from the ECMWF model. It was found that the differences between predictions and measurements of GHI are correlated mainly with the clearness index, solar zenith angle, mean air temperature, relative humidity and total water column. An artificial neural network is developed to improve predictions of GHI for four locations being the base for a predicting algorithm that can be used in energy management models of solar systems thus allowing a better management of renewable energy conversion. |
id |
RCAP_2c0e6bb58ffc102897061cfb165779f4 |
---|---|
oai_identifier_str |
oai:dspace.uevora.pt:10174/37234 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Study and development of a solar radiation predicting algorithm based on ECMWF's forecasts and ANNssolar radiationsolar energysolar radiation forecastECMWF modelartificial neural networkThis paper presents a study on the influence of Sun-Earth geometry and atmospheric variables on the predictions of solar global irradiation (GHI) obtained from the ECMWF model. It was found that the differences between predictions and measurements of GHI are correlated mainly with the clearness index, solar zenith angle, mean air temperature, relative humidity and total water column. An artificial neural network is developed to improve predictions of GHI for four locations being the base for a predicting algorithm that can be used in energy management models of solar systems thus allowing a better management of renewable energy conversion.Japan Council for Renewable Energy2024-08-27T14:45:12Z2024-08-272018-06-17T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://hdl.handle.net/10174/37234http://hdl.handle.net/10174/37234https://doi.org/10.24752/gre.1.0_43engPereira, S., Canhoto, P., Salgado, R., Costa, M. J. (2018). Study and development of a solar radiation predicting algorithm based on ECMWF's forecasts and ANNs. Grand Renewable Energy Proceedings, 2018 - International Conference and Exhibition, Japan Council for Renewable Energy, Vol. 1, pp. 43-46, 17-22 June 2018, Yokohama, Japan. ISSN: 2434-0871.spereira@uevora.ptcanhoto@uevora.ptrsal@uevora.ptmjcosta@uevora.pt286Pereira, SaraCanhoto, PauloSalgado, RuiCosta, Maria Joãoinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-09-10T01:48:21Zoai:dspace.uevora.pt:10174/37234Portal AgregadorONGhttps://www.rcaap.pt/oai/openairemluisa.alvim@gmail.comopendoar:71602024-09-10T01:48:21Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Study and development of a solar radiation predicting algorithm based on ECMWF's forecasts and ANNs |
title |
Study and development of a solar radiation predicting algorithm based on ECMWF's forecasts and ANNs |
spellingShingle |
Study and development of a solar radiation predicting algorithm based on ECMWF's forecasts and ANNs Pereira, Sara solar radiation solar energy solar radiation forecast ECMWF model artificial neural network |
title_short |
Study and development of a solar radiation predicting algorithm based on ECMWF's forecasts and ANNs |
title_full |
Study and development of a solar radiation predicting algorithm based on ECMWF's forecasts and ANNs |
title_fullStr |
Study and development of a solar radiation predicting algorithm based on ECMWF's forecasts and ANNs |
title_full_unstemmed |
Study and development of a solar radiation predicting algorithm based on ECMWF's forecasts and ANNs |
title_sort |
Study and development of a solar radiation predicting algorithm based on ECMWF's forecasts and ANNs |
author |
Pereira, Sara |
author_facet |
Pereira, Sara Canhoto, Paulo Salgado, Rui Costa, Maria João |
author_role |
author |
author2 |
Canhoto, Paulo Salgado, Rui Costa, Maria João |
author2_role |
author author author |
dc.contributor.author.fl_str_mv |
Pereira, Sara Canhoto, Paulo Salgado, Rui Costa, Maria João |
dc.subject.por.fl_str_mv |
solar radiation solar energy solar radiation forecast ECMWF model artificial neural network |
topic |
solar radiation solar energy solar radiation forecast ECMWF model artificial neural network |
description |
This paper presents a study on the influence of Sun-Earth geometry and atmospheric variables on the predictions of solar global irradiation (GHI) obtained from the ECMWF model. It was found that the differences between predictions and measurements of GHI are correlated mainly with the clearness index, solar zenith angle, mean air temperature, relative humidity and total water column. An artificial neural network is developed to improve predictions of GHI for four locations being the base for a predicting algorithm that can be used in energy management models of solar systems thus allowing a better management of renewable energy conversion. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018-06-17T00:00:00Z 2024-08-27T14:45:12Z 2024-08-27 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10174/37234 http://hdl.handle.net/10174/37234 https://doi.org/10.24752/gre.1.0_43 |
url |
http://hdl.handle.net/10174/37234 https://doi.org/10.24752/gre.1.0_43 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Pereira, S., Canhoto, P., Salgado, R., Costa, M. J. (2018). Study and development of a solar radiation predicting algorithm based on ECMWF's forecasts and ANNs. Grand Renewable Energy Proceedings, 2018 - International Conference and Exhibition, Japan Council for Renewable Energy, Vol. 1, pp. 43-46, 17-22 June 2018, Yokohama, Japan. ISSN: 2434-0871. spereira@uevora.pt canhoto@uevora.pt rsal@uevora.pt mjcosta@uevora.pt 286 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Japan Council for Renewable Energy |
publisher.none.fl_str_mv |
Japan Council for Renewable Energy |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
mluisa.alvim@gmail.com |
_version_ |
1817547158748921856 |