A machine learning approach for single cell interphase cell cycle staging

Detalhes bibliográficos
Autor(a) principal: Narotamo, H
Data de Publicação: 2021
Outros Autores: Fernandes, MS, Moreira, AM, Melo, S, Seruca, R, Silveira, M, Sanches, JM
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: https://hdl.handle.net/10216/153797
Resumo: The cell nucleus is a tightly regulated organelle and its architectural structure is dynamically orchestrated to maintain normal cell function. Indeed, fluctuations in nuclear size and shape are known to occur during the cell cycle and alterations in nuclear morphology are also hallmarks of many diseases including cancer. Regrettably, automated reliable tools for cell cycle staging at single cell level using in situ images are still limited. It is therefore urgent to establish accurate strategies combining bioimaging with high-content image analysis for a bona fide classification. In this study we developed a supervised machine learning method for interphase cell cycle staging of individual adherent cells using in situ fluorescence images of nuclei stained with DAPI. A Support Vector Machine (SVM) classifier operated over normalized nuclear features using more than 3500 DAPI stained nuclei. Molecular ground truth labels were obtained by automatic image processing using fluorescent ubiquitination-based cell cycle indicator (Fucci) technology. An average F1-Score of 87.7% was achieved with this framework. Furthermore, the method was validated on distinct cell types reaching recall values higher than 89%. Our method is a robust approach to identify cells in G1 or S/G2 at the individual level, with implications in research and clinical applications.
id RCAP_2caac1918b8d241992e9a13a8eb65126
oai_identifier_str oai:repositorio-aberto.up.pt:10216/153797
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling A machine learning approach for single cell interphase cell cycle stagingThe cell nucleus is a tightly regulated organelle and its architectural structure is dynamically orchestrated to maintain normal cell function. Indeed, fluctuations in nuclear size and shape are known to occur during the cell cycle and alterations in nuclear morphology are also hallmarks of many diseases including cancer. Regrettably, automated reliable tools for cell cycle staging at single cell level using in situ images are still limited. It is therefore urgent to establish accurate strategies combining bioimaging with high-content image analysis for a bona fide classification. In this study we developed a supervised machine learning method for interphase cell cycle staging of individual adherent cells using in situ fluorescence images of nuclei stained with DAPI. A Support Vector Machine (SVM) classifier operated over normalized nuclear features using more than 3500 DAPI stained nuclei. Molecular ground truth labels were obtained by automatic image processing using fluorescent ubiquitination-based cell cycle indicator (Fucci) technology. An average F1-Score of 87.7% was achieved with this framework. Furthermore, the method was validated on distinct cell types reaching recall values higher than 89%. Our method is a robust approach to identify cells in G1 or S/G2 at the individual level, with implications in research and clinical applications.Nature Publishing Group20212021-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttps://hdl.handle.net/10216/153797eng2045-232210.1038/s41598-021-98489-5Narotamo, HFernandes, MSMoreira, AMMelo, SSeruca, RSilveira, MSanches, JMinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-11-29T14:22:50Zoai:repositorio-aberto.up.pt:10216/153797Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T23:59:59.962045Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv A machine learning approach for single cell interphase cell cycle staging
title A machine learning approach for single cell interphase cell cycle staging
spellingShingle A machine learning approach for single cell interphase cell cycle staging
Narotamo, H
title_short A machine learning approach for single cell interphase cell cycle staging
title_full A machine learning approach for single cell interphase cell cycle staging
title_fullStr A machine learning approach for single cell interphase cell cycle staging
title_full_unstemmed A machine learning approach for single cell interphase cell cycle staging
title_sort A machine learning approach for single cell interphase cell cycle staging
author Narotamo, H
author_facet Narotamo, H
Fernandes, MS
Moreira, AM
Melo, S
Seruca, R
Silveira, M
Sanches, JM
author_role author
author2 Fernandes, MS
Moreira, AM
Melo, S
Seruca, R
Silveira, M
Sanches, JM
author2_role author
author
author
author
author
author
dc.contributor.author.fl_str_mv Narotamo, H
Fernandes, MS
Moreira, AM
Melo, S
Seruca, R
Silveira, M
Sanches, JM
description The cell nucleus is a tightly regulated organelle and its architectural structure is dynamically orchestrated to maintain normal cell function. Indeed, fluctuations in nuclear size and shape are known to occur during the cell cycle and alterations in nuclear morphology are also hallmarks of many diseases including cancer. Regrettably, automated reliable tools for cell cycle staging at single cell level using in situ images are still limited. It is therefore urgent to establish accurate strategies combining bioimaging with high-content image analysis for a bona fide classification. In this study we developed a supervised machine learning method for interphase cell cycle staging of individual adherent cells using in situ fluorescence images of nuclei stained with DAPI. A Support Vector Machine (SVM) classifier operated over normalized nuclear features using more than 3500 DAPI stained nuclei. Molecular ground truth labels were obtained by automatic image processing using fluorescent ubiquitination-based cell cycle indicator (Fucci) technology. An average F1-Score of 87.7% was achieved with this framework. Furthermore, the method was validated on distinct cell types reaching recall values higher than 89%. Our method is a robust approach to identify cells in G1 or S/G2 at the individual level, with implications in research and clinical applications.
publishDate 2021
dc.date.none.fl_str_mv 2021
2021-01-01T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://hdl.handle.net/10216/153797
url https://hdl.handle.net/10216/153797
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 2045-2322
10.1038/s41598-021-98489-5
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Nature Publishing Group
publisher.none.fl_str_mv Nature Publishing Group
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799135923724615680