Controlling the numerical Cerenkov instability in PIC simulations using a customized finite difference Maxwell solver and a local FFT based current correction

Detalhes bibliográficos
Autor(a) principal: Li, F.
Data de Publicação: 2017
Outros Autores: Yu, P. C., Xu, X., Fiuza, F., Decyk, V. K., Dalichaouch, T., Davidson, A., Tableman, A., An, W., Tsung, F. S., Fonseca, R. A., Lu, W., Mori, W. B.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10071/13116
Resumo: In this paper we present a customized finite-difference-time-domain (FDTD) Maxwell solver for the particle-in-cell (PIC) algorithm. The solver is customized to effectively eliminate the numerical Cerenkov instability (NCI) which arises when a plasma (neutral or non-neutral) relativistically drifts on a grid when using the PIC algorithm. We control the EM dispersion curve in the direction of the plasma drift of a FDTD Maxwell solver by using a customized higher order finite difference operator for the spatial derivative along the direction of the drift (1 direction). We show that this eliminates the main NCI modes with moderate broken vertical bar k(1)broken vertical bar, while keeps additional main NCI modes well outside the range of physical interest with higher broken vertical bar k(1)broken vertical bar. These main NCI modes can be easily filtered out along with first spatial aliasing NCI modes which are also at the edge of the fundamental Brillouin zone. The customized solver has the possible advantage of improved parallel scalability because it can be easily partitioned along (1) over bar which typically has many more cells than other directions for the problems of interest. We show that FFTs can be performed locally to current on each partition to filter out the main and first spatial aliasing NCI modes, and to correct the current so that it satisfies the continuity equation for the customized spatial derivative. This ensures that Gauss' Law is satisfied. We present simulation examples of one relativistically drifting plasma, of two colliding relativistically drifting plasmas, and of nonlinear laser wakefield acceleration (LWFA) in a Lorentz boosted frame that show no evidence of the NCI can be observed when using this customized Maxwell solver together with its NCI elimination scheme.
id RCAP_2cce739a1b9570e837dcab8815c279cc
oai_identifier_str oai:repositorio.iscte-iul.pt:10071/13116
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Controlling the numerical Cerenkov instability in PIC simulations using a customized finite difference Maxwell solver and a local FFT based current correctionPIC simulationHybrid Maxwell solverRelativistic plasma driftNumerical Cerenkov instabilityLorentz boosted frameIn this paper we present a customized finite-difference-time-domain (FDTD) Maxwell solver for the particle-in-cell (PIC) algorithm. The solver is customized to effectively eliminate the numerical Cerenkov instability (NCI) which arises when a plasma (neutral or non-neutral) relativistically drifts on a grid when using the PIC algorithm. We control the EM dispersion curve in the direction of the plasma drift of a FDTD Maxwell solver by using a customized higher order finite difference operator for the spatial derivative along the direction of the drift (1 direction). We show that this eliminates the main NCI modes with moderate broken vertical bar k(1)broken vertical bar, while keeps additional main NCI modes well outside the range of physical interest with higher broken vertical bar k(1)broken vertical bar. These main NCI modes can be easily filtered out along with first spatial aliasing NCI modes which are also at the edge of the fundamental Brillouin zone. The customized solver has the possible advantage of improved parallel scalability because it can be easily partitioned along (1) over bar which typically has many more cells than other directions for the problems of interest. We show that FFTs can be performed locally to current on each partition to filter out the main and first spatial aliasing NCI modes, and to correct the current so that it satisfies the continuity equation for the customized spatial derivative. This ensures that Gauss' Law is satisfied. We present simulation examples of one relativistically drifting plasma, of two colliding relativistically drifting plasmas, and of nonlinear laser wakefield acceleration (LWFA) in a Lorentz boosted frame that show no evidence of the NCI can be observed when using this customized Maxwell solver together with its NCI elimination scheme.Elsevier B.V.2017-04-24T08:36:26Z2017-01-01T00:00:00Z20172019-04-29T10:05:27Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10071/13116eng0010-465510.1016/j.cpc.2017.01.001Li, F.Yu, P. C.Xu, X.Fiuza, F.Decyk, V. K.Dalichaouch, T.Davidson, A.Tableman, A.An, W.Tsung, F. S.Fonseca, R. A.Lu, W.Mori, W. B.info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-07-07T03:56:13Zoai:repositorio.iscte-iul.pt:10071/13116Portal AgregadorONGhttps://www.rcaap.pt/oai/openairemluisa.alvim@gmail.comopendoar:71602024-07-07T03:56:13Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Controlling the numerical Cerenkov instability in PIC simulations using a customized finite difference Maxwell solver and a local FFT based current correction
title Controlling the numerical Cerenkov instability in PIC simulations using a customized finite difference Maxwell solver and a local FFT based current correction
spellingShingle Controlling the numerical Cerenkov instability in PIC simulations using a customized finite difference Maxwell solver and a local FFT based current correction
Li, F.
PIC simulation
Hybrid Maxwell solver
Relativistic plasma drift
Numerical Cerenkov instability
Lorentz boosted frame
title_short Controlling the numerical Cerenkov instability in PIC simulations using a customized finite difference Maxwell solver and a local FFT based current correction
title_full Controlling the numerical Cerenkov instability in PIC simulations using a customized finite difference Maxwell solver and a local FFT based current correction
title_fullStr Controlling the numerical Cerenkov instability in PIC simulations using a customized finite difference Maxwell solver and a local FFT based current correction
title_full_unstemmed Controlling the numerical Cerenkov instability in PIC simulations using a customized finite difference Maxwell solver and a local FFT based current correction
title_sort Controlling the numerical Cerenkov instability in PIC simulations using a customized finite difference Maxwell solver and a local FFT based current correction
author Li, F.
author_facet Li, F.
Yu, P. C.
Xu, X.
Fiuza, F.
Decyk, V. K.
Dalichaouch, T.
Davidson, A.
Tableman, A.
An, W.
Tsung, F. S.
Fonseca, R. A.
Lu, W.
Mori, W. B.
author_role author
author2 Yu, P. C.
Xu, X.
Fiuza, F.
Decyk, V. K.
Dalichaouch, T.
Davidson, A.
Tableman, A.
An, W.
Tsung, F. S.
Fonseca, R. A.
Lu, W.
Mori, W. B.
author2_role author
author
author
author
author
author
author
author
author
author
author
author
dc.contributor.author.fl_str_mv Li, F.
Yu, P. C.
Xu, X.
Fiuza, F.
Decyk, V. K.
Dalichaouch, T.
Davidson, A.
Tableman, A.
An, W.
Tsung, F. S.
Fonseca, R. A.
Lu, W.
Mori, W. B.
dc.subject.por.fl_str_mv PIC simulation
Hybrid Maxwell solver
Relativistic plasma drift
Numerical Cerenkov instability
Lorentz boosted frame
topic PIC simulation
Hybrid Maxwell solver
Relativistic plasma drift
Numerical Cerenkov instability
Lorentz boosted frame
description In this paper we present a customized finite-difference-time-domain (FDTD) Maxwell solver for the particle-in-cell (PIC) algorithm. The solver is customized to effectively eliminate the numerical Cerenkov instability (NCI) which arises when a plasma (neutral or non-neutral) relativistically drifts on a grid when using the PIC algorithm. We control the EM dispersion curve in the direction of the plasma drift of a FDTD Maxwell solver by using a customized higher order finite difference operator for the spatial derivative along the direction of the drift (1 direction). We show that this eliminates the main NCI modes with moderate broken vertical bar k(1)broken vertical bar, while keeps additional main NCI modes well outside the range of physical interest with higher broken vertical bar k(1)broken vertical bar. These main NCI modes can be easily filtered out along with first spatial aliasing NCI modes which are also at the edge of the fundamental Brillouin zone. The customized solver has the possible advantage of improved parallel scalability because it can be easily partitioned along (1) over bar which typically has many more cells than other directions for the problems of interest. We show that FFTs can be performed locally to current on each partition to filter out the main and first spatial aliasing NCI modes, and to correct the current so that it satisfies the continuity equation for the customized spatial derivative. This ensures that Gauss' Law is satisfied. We present simulation examples of one relativistically drifting plasma, of two colliding relativistically drifting plasmas, and of nonlinear laser wakefield acceleration (LWFA) in a Lorentz boosted frame that show no evidence of the NCI can be observed when using this customized Maxwell solver together with its NCI elimination scheme.
publishDate 2017
dc.date.none.fl_str_mv 2017-04-24T08:36:26Z
2017-01-01T00:00:00Z
2017
2019-04-29T10:05:27Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10071/13116
url http://hdl.handle.net/10071/13116
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 0010-4655
10.1016/j.cpc.2017.01.001
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Elsevier B.V.
publisher.none.fl_str_mv Elsevier B.V.
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv mluisa.alvim@gmail.com
_version_ 1817546565555847168