Injective edge coloring of graphs

Detalhes bibliográficos
Autor(a) principal: Cardoso, Domingos M.
Data de Publicação: 2019
Outros Autores: Cerdeira, J. Orestes, Dominic, Charles, Cruz, J. Pedro
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10773/27299
Resumo: Three edges $e_{1}, e_{2}$ and $e_{3}$ in a graph $G$ are consecutive if they form a path (in this order) or a cycle of lengths three. An injective edge coloring of a graph $G = (V,E)$ is a coloring $c$ of the edges of $G$ such that if $e_{1}, e_{2}$ and $e_{3}$ are consecutive edges in $G$, then $c(e_{1})\neq c(e_3)$. The injective edge coloring number $\chi_{i}^{'}(G)$ is the minimum number of colors permitted in such a coloring. In this paper, exact values of $\chi_{i}^{'}(G)$ for several classes of graphs are obtained, upper and lower bounds for $\chi_{i}^{'}(G)$ are introduced and it is proven that checking whether $\chi_{i}^{'}(G)= k$ is NP-complete.
id RCAP_2d31ced22070a444ae280f407e95aba5
oai_identifier_str oai:ria.ua.pt:10773/27299
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Injective edge coloring of graphsInjective coloringInjective edge coloringThree edges $e_{1}, e_{2}$ and $e_{3}$ in a graph $G$ are consecutive if they form a path (in this order) or a cycle of lengths three. An injective edge coloring of a graph $G = (V,E)$ is a coloring $c$ of the edges of $G$ such that if $e_{1}, e_{2}$ and $e_{3}$ are consecutive edges in $G$, then $c(e_{1})\neq c(e_3)$. The injective edge coloring number $\chi_{i}^{'}(G)$ is the minimum number of colors permitted in such a coloring. In this paper, exact values of $\chi_{i}^{'}(G)$ for several classes of graphs are obtained, upper and lower bounds for $\chi_{i}^{'}(G)$ are introduced and it is proven that checking whether $\chi_{i}^{'}(G)= k$ is NP-complete.Faculty of Sciences and Mathematics, University of Nis2020-01-16T18:04:42Z2019-12-01T00:00:00Z2019-12info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10773/27299eng0354-518010.2298/FIL1919411CCardoso, Domingos M.Cerdeira, J. OrestesDominic, CharlesCruz, J. Pedroinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-02-22T11:52:54Zoai:ria.ua.pt:10773/27299Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:00:06.941418Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Injective edge coloring of graphs
title Injective edge coloring of graphs
spellingShingle Injective edge coloring of graphs
Cardoso, Domingos M.
Injective coloring
Injective edge coloring
title_short Injective edge coloring of graphs
title_full Injective edge coloring of graphs
title_fullStr Injective edge coloring of graphs
title_full_unstemmed Injective edge coloring of graphs
title_sort Injective edge coloring of graphs
author Cardoso, Domingos M.
author_facet Cardoso, Domingos M.
Cerdeira, J. Orestes
Dominic, Charles
Cruz, J. Pedro
author_role author
author2 Cerdeira, J. Orestes
Dominic, Charles
Cruz, J. Pedro
author2_role author
author
author
dc.contributor.author.fl_str_mv Cardoso, Domingos M.
Cerdeira, J. Orestes
Dominic, Charles
Cruz, J. Pedro
dc.subject.por.fl_str_mv Injective coloring
Injective edge coloring
topic Injective coloring
Injective edge coloring
description Three edges $e_{1}, e_{2}$ and $e_{3}$ in a graph $G$ are consecutive if they form a path (in this order) or a cycle of lengths three. An injective edge coloring of a graph $G = (V,E)$ is a coloring $c$ of the edges of $G$ such that if $e_{1}, e_{2}$ and $e_{3}$ are consecutive edges in $G$, then $c(e_{1})\neq c(e_3)$. The injective edge coloring number $\chi_{i}^{'}(G)$ is the minimum number of colors permitted in such a coloring. In this paper, exact values of $\chi_{i}^{'}(G)$ for several classes of graphs are obtained, upper and lower bounds for $\chi_{i}^{'}(G)$ are introduced and it is proven that checking whether $\chi_{i}^{'}(G)= k$ is NP-complete.
publishDate 2019
dc.date.none.fl_str_mv 2019-12-01T00:00:00Z
2019-12
2020-01-16T18:04:42Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10773/27299
url http://hdl.handle.net/10773/27299
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 0354-5180
10.2298/FIL1919411C
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Faculty of Sciences and Mathematics, University of Nis
publisher.none.fl_str_mv Faculty of Sciences and Mathematics, University of Nis
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799137655770841088