Pasteurization of Beer by Non-Thermal Technologies

Detalhes bibliográficos
Autor(a) principal: Milani, Elham
Data de Publicação: 2022
Outros Autores: Silva, Filipa V.M.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10400.5/26933
Resumo: The pasteurization of beer occurs at the end of the industrial production, after fermentation. Generally, a mild thermal process (60°C) is employed aiming to inactivate the fermenting yeast and potential spoilage microorganisms, thus extending the beer shelf-life at room temperature. The heat treatment negatively affects the original beer freshness and flavor. In this study, beer pasteurization using emerging non-thermal technologies, namely, highpressure processing (HPP), pulsed electric fields (PEF), and ultrasound (US), was reviewed, including the effect on microbial inactivation and beer quality. The combination of non-thermal methods with mild heat for more efficient pasteurization of beer was also reviewed. All technologies caused microbial inactivation in beer. However, room temperature HPP treatment was the most efficient method, delivering the minimum 15 PU (pasteurization units) to beer after seconds (e.g., 300 MPa for 27 s), as opposed to thermal and TS treatments which required several minutes, while causing a negative impact on beer sensory. As expected, PEF + heat caused a higher microbial inactivation than PEF alone, and yeast ascospores were more resistant than vegetative yeast cells. Non-thermal PEF (35–45 kV/cm) caused 3–5.8 log reductions in vegetative bacteria. Studies on thermal assisted PEF and ultrasound combined with low heat (50–55°C) showed processing times in the magnitude of microseconds for PEF pasteurization and 0.5–2min (depending on the temperature) for TS pasteurization. With respect to impact of these technologies on beer quality, HPP, thermosonication (TS), high pressure homogenization (HPH), and dense phase CO2 (DPCD) treatments revealed less effect on beer sensory properties, better retaining the freshness of original beer, compared to thermally processed beers.
id RCAP_2d8314c6322b77d18f845bd316874d0f
oai_identifier_str oai:www.repository.utl.pt:10400.5/26933
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Pasteurization of Beer by Non-Thermal TechnologiesHPPhigh pressure processingPEFpulsed electical fieldultrasoundqualitymicrobial inactivationyeastThe pasteurization of beer occurs at the end of the industrial production, after fermentation. Generally, a mild thermal process (60°C) is employed aiming to inactivate the fermenting yeast and potential spoilage microorganisms, thus extending the beer shelf-life at room temperature. The heat treatment negatively affects the original beer freshness and flavor. In this study, beer pasteurization using emerging non-thermal technologies, namely, highpressure processing (HPP), pulsed electric fields (PEF), and ultrasound (US), was reviewed, including the effect on microbial inactivation and beer quality. The combination of non-thermal methods with mild heat for more efficient pasteurization of beer was also reviewed. All technologies caused microbial inactivation in beer. However, room temperature HPP treatment was the most efficient method, delivering the minimum 15 PU (pasteurization units) to beer after seconds (e.g., 300 MPa for 27 s), as opposed to thermal and TS treatments which required several minutes, while causing a negative impact on beer sensory. As expected, PEF + heat caused a higher microbial inactivation than PEF alone, and yeast ascospores were more resistant than vegetative yeast cells. Non-thermal PEF (35–45 kV/cm) caused 3–5.8 log reductions in vegetative bacteria. Studies on thermal assisted PEF and ultrasound combined with low heat (50–55°C) showed processing times in the magnitude of microseconds for PEF pasteurization and 0.5–2min (depending on the temperature) for TS pasteurization. With respect to impact of these technologies on beer quality, HPP, thermosonication (TS), high pressure homogenization (HPH), and dense phase CO2 (DPCD) treatments revealed less effect on beer sensory properties, better retaining the freshness of original beer, compared to thermally processed beers.Repositório da Universidade de LisboaMilani, ElhamSilva, Filipa V.M.2023-01-18T13:54:49Z20222022-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10400.5/26933engMilani EA and Silva FVM (2022) Pasteurization of Beer by Non- Thermal Technologies. Front. Food. Sci. Technol. 1:79867610.3389/frfst.2021.798676info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-03-06T14:56:21Zoai:www.repository.utl.pt:10400.5/26933Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T17:10:28.994298Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Pasteurization of Beer by Non-Thermal Technologies
title Pasteurization of Beer by Non-Thermal Technologies
spellingShingle Pasteurization of Beer by Non-Thermal Technologies
Milani, Elham
HPP
high pressure processing
PEF
pulsed electical field
ultrasound
quality
microbial inactivation
yeast
title_short Pasteurization of Beer by Non-Thermal Technologies
title_full Pasteurization of Beer by Non-Thermal Technologies
title_fullStr Pasteurization of Beer by Non-Thermal Technologies
title_full_unstemmed Pasteurization of Beer by Non-Thermal Technologies
title_sort Pasteurization of Beer by Non-Thermal Technologies
author Milani, Elham
author_facet Milani, Elham
Silva, Filipa V.M.
author_role author
author2 Silva, Filipa V.M.
author2_role author
dc.contributor.none.fl_str_mv Repositório da Universidade de Lisboa
dc.contributor.author.fl_str_mv Milani, Elham
Silva, Filipa V.M.
dc.subject.por.fl_str_mv HPP
high pressure processing
PEF
pulsed electical field
ultrasound
quality
microbial inactivation
yeast
topic HPP
high pressure processing
PEF
pulsed electical field
ultrasound
quality
microbial inactivation
yeast
description The pasteurization of beer occurs at the end of the industrial production, after fermentation. Generally, a mild thermal process (60°C) is employed aiming to inactivate the fermenting yeast and potential spoilage microorganisms, thus extending the beer shelf-life at room temperature. The heat treatment negatively affects the original beer freshness and flavor. In this study, beer pasteurization using emerging non-thermal technologies, namely, highpressure processing (HPP), pulsed electric fields (PEF), and ultrasound (US), was reviewed, including the effect on microbial inactivation and beer quality. The combination of non-thermal methods with mild heat for more efficient pasteurization of beer was also reviewed. All technologies caused microbial inactivation in beer. However, room temperature HPP treatment was the most efficient method, delivering the minimum 15 PU (pasteurization units) to beer after seconds (e.g., 300 MPa for 27 s), as opposed to thermal and TS treatments which required several minutes, while causing a negative impact on beer sensory. As expected, PEF + heat caused a higher microbial inactivation than PEF alone, and yeast ascospores were more resistant than vegetative yeast cells. Non-thermal PEF (35–45 kV/cm) caused 3–5.8 log reductions in vegetative bacteria. Studies on thermal assisted PEF and ultrasound combined with low heat (50–55°C) showed processing times in the magnitude of microseconds for PEF pasteurization and 0.5–2min (depending on the temperature) for TS pasteurization. With respect to impact of these technologies on beer quality, HPP, thermosonication (TS), high pressure homogenization (HPH), and dense phase CO2 (DPCD) treatments revealed less effect on beer sensory properties, better retaining the freshness of original beer, compared to thermally processed beers.
publishDate 2022
dc.date.none.fl_str_mv 2022
2022-01-01T00:00:00Z
2023-01-18T13:54:49Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10400.5/26933
url http://hdl.handle.net/10400.5/26933
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Milani EA and Silva FVM (2022) Pasteurization of Beer by Non- Thermal Technologies. Front. Food. Sci. Technol. 1:798676
10.3389/frfst.2021.798676
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799131202244837376