Formation of carbon dioxide based gas hydrates

Detalhes bibliográficos
Autor(a) principal: Pereira, Liliana Sofia Carqueijó
Data de Publicação: 2022
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10773/37859
Resumo: Carbon dioxide hydrates are compounds that form through a combination of CO₂ and H₂O molecules. Currently, carbon dioxide hydrates have one of the greatest potential applications in the areas of climate change, such as capture and storage of carbon dioxide or gas replacement in the exploitation of methane hydrates. These compounds have also been a major problem in the oil and natural gas industries because they cause pipeline blockages. To support their applications and solve the industrial problem, understanding the kinetics of carbon dioxide hydrates is one of the current challenges. In this context, this work is focused on the study of kinetics of CO₂ hydrate formation. CO₂ hydrates have been formed in a high pressure apparatus with an appropriate nucleation cell and mixing chamber. The experiments were performed with mixtures of carbon dioxide and water at temperature T = 283.4 ± 0.1 K and pressure p = 9.2 ± 0.1 K MPa, and have a carbon dioxide solubility in water of xCO₂ = 0.0294. The nucleation experiments were performed at 275.9 ± 0.1 K in pressure increments ranging from 9.5 to 33.0 MPa. The apparatus and the methodology were optimized and the results show a high reproducibility of gas hydrate formation. Focusing on carbon dioxide hydrate kinetics, a high dependence on the induction time and the nucleation rate as a function of Δp, is observed. From Δp = 9.5 MPa to Δp = 33.0 MPa, they can vary approximately from 1 to 370 s and from 5.47 x 10⁵ to 1.32 x 10⁸ m⁻³ s⁻¹, respectively. In these conditions, there were observed two nucleation regimes: heterogeneous nucleation, at Δp < 28.0 MPa and homogeneous nucleation, at Δp > 32.5 MPa. The regime change is found at Δp = [28.0 - 32.5] MPa. For heterogeneous nucleation, the kinetic and the thermodynamic parameters calculated are A = [4.9 ± 0.5] x 10⁶ m⁻³ s⁻¹ and B = 1.8 ± 0.2, respectively. For homogeneous nucleation, the kinetic and the thermodynamic parameters calculated are A = 3.9 x 10¹² m⁻³ s⁻¹ and B = 24.7, respectively. These conclusions support the classical nucleation theory. However, a more comprehensive and systematic studies are still needed to understand nucleation process and support these considerations. To solve the current challenges, additional efforts can be made, for example, considering hydrate memory effect when reusing the carbon dioxide and water mixture and other apparatus optimisations.
id RCAP_2da06c8cc31baf1d3fec17dbfa83430a
oai_identifier_str oai:ria.ua.pt:10773/37859
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Formation of carbon dioxide based gas hydratesGas hydratesCarbon dioxideWaterClustersHomogeneous nucleationHeterogeneous nucleationKineticsNucleation rateHigh pressureSupersaturationCarbon dioxide hydrates are compounds that form through a combination of CO₂ and H₂O molecules. Currently, carbon dioxide hydrates have one of the greatest potential applications in the areas of climate change, such as capture and storage of carbon dioxide or gas replacement in the exploitation of methane hydrates. These compounds have also been a major problem in the oil and natural gas industries because they cause pipeline blockages. To support their applications and solve the industrial problem, understanding the kinetics of carbon dioxide hydrates is one of the current challenges. In this context, this work is focused on the study of kinetics of CO₂ hydrate formation. CO₂ hydrates have been formed in a high pressure apparatus with an appropriate nucleation cell and mixing chamber. The experiments were performed with mixtures of carbon dioxide and water at temperature T = 283.4 ± 0.1 K and pressure p = 9.2 ± 0.1 K MPa, and have a carbon dioxide solubility in water of xCO₂ = 0.0294. The nucleation experiments were performed at 275.9 ± 0.1 K in pressure increments ranging from 9.5 to 33.0 MPa. The apparatus and the methodology were optimized and the results show a high reproducibility of gas hydrate formation. Focusing on carbon dioxide hydrate kinetics, a high dependence on the induction time and the nucleation rate as a function of Δp, is observed. From Δp = 9.5 MPa to Δp = 33.0 MPa, they can vary approximately from 1 to 370 s and from 5.47 x 10⁵ to 1.32 x 10⁸ m⁻³ s⁻¹, respectively. In these conditions, there were observed two nucleation regimes: heterogeneous nucleation, at Δp < 28.0 MPa and homogeneous nucleation, at Δp > 32.5 MPa. The regime change is found at Δp = [28.0 - 32.5] MPa. For heterogeneous nucleation, the kinetic and the thermodynamic parameters calculated are A = [4.9 ± 0.5] x 10⁶ m⁻³ s⁻¹ and B = 1.8 ± 0.2, respectively. For homogeneous nucleation, the kinetic and the thermodynamic parameters calculated are A = 3.9 x 10¹² m⁻³ s⁻¹ and B = 24.7, respectively. These conclusions support the classical nucleation theory. However, a more comprehensive and systematic studies are still needed to understand nucleation process and support these considerations. To solve the current challenges, additional efforts can be made, for example, considering hydrate memory effect when reusing the carbon dioxide and water mixture and other apparatus optimisations.Os hidratos de dióxido de carbono são compostos que se formam através da interação quimica das moléculas de CO₂ e H2O. Atualmente, a mitigação das alterações climáticas são um dos maiores potenciais para as aplicações de hidratos de dióxido de carbono, por exemplo, através da captura e armazenamento de dióxido de carbono em gás hidratos ou a substituição de gás natural na exploração de hidratos de metano. Gás hidratos de dióxido de carbono também têm sido um grande problema nas indústrias de petróleo e gás natural, por causarem bloqueios nas tubagens. Para apoiar as suas aplicações e resolver o problema industrial, entender a cinética destes compostos é um dos maiores desafios atuais. Neste contexto, este trabalho é focado no estudo da cinética de formação de hidratos de CO₂. Os hidratos de CO₂ são formados num aparelho de alta pressão com uma célula de nucleação e uma câmara de mistura apropriada. Todos os ensaios experimentais foram realizados com misturas de dióxido de carbono e água a uma temperatura T = 283.4 ± 0.1 K e pressão p = 9.2 ± 0.1 K MPa, resultando numa solubilidade de dióxido de carbono em água de xCO₂ = 0.0294. Os ensaios experimentais de nucleação foram realizados a uma temperatura T = 275.9 ± 0.1 K em incrementos de pressão Δp, a partir de 9.5 até 32.5 MPa. O aparelho e a metodologia adotada para a medição da formação de gás hidratos foram otimizados, e os resultados mostram uma alta reprodutibilidade da formação de hidratos de gás. Com foco na cinética de hidratos de dióxido de carbono, observa-se uma alta dependência do tempo de indução e da velocidade de nucleação em função de Δp. A partir de Δp = 9.5 MPa até Δp = 33.0 MPa, estes podem variar aproximadamente de 1 a 370 s e de 5.47 x 10⁵ a 1.32 x 10⁸ m⁻³ s⁻¹, respectivamente. Nestas condições, são observados dois regimes de nucleação: nucleação heterogênea, em Δp < 28.0 MPa e nucleação homogênea, em Δp > 32.5 MPa. A mudança de regime é encontrada em Δp = [28.0 - 32.5] MPa. Para nucleação heterogênea, o parâmetro cinético e o parâmetro termodinâmico obtidos são A = [4.9 ± 0.5] x 10⁶ m⁻³ s⁻¹ e B = 1.8 ± 0.2, respetivamente. Para nucleação homogênea, o parâmetro cinético e o parâmetro termodinâmico obtidos são A = 3.9 x 10¹² m⁻³ s⁻¹ e B = 24.7, respetivamente. As conclusões suportam a teoria clássica de nucleação. No entanto, estudos mais abrangentes e sistemáticos são ainda necessários para entender o processo de nucleação e apoiar estas considerações. Para resolver os desafios atuais, esforços adicionais podem ser feitos, por exemplo, considerando o efeito da memória dos hidratos de gás ao reutilizar a mistura de dióxido de carbono e água e outras otimizações no aparelho experimental.2024-12-21T00:00:00Z2022-12-19T00:00:00Z2022-12-19info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10773/37859engPereira, Liliana Sofia Carqueijóinfo:eu-repo/semantics/embargoedAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-02-22T12:12:22Zoai:ria.ua.pt:10773/37859Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:08:04.683047Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Formation of carbon dioxide based gas hydrates
title Formation of carbon dioxide based gas hydrates
spellingShingle Formation of carbon dioxide based gas hydrates
Pereira, Liliana Sofia Carqueijó
Gas hydrates
Carbon dioxide
Water
Clusters
Homogeneous nucleation
Heterogeneous nucleation
Kinetics
Nucleation rate
High pressure
Supersaturation
title_short Formation of carbon dioxide based gas hydrates
title_full Formation of carbon dioxide based gas hydrates
title_fullStr Formation of carbon dioxide based gas hydrates
title_full_unstemmed Formation of carbon dioxide based gas hydrates
title_sort Formation of carbon dioxide based gas hydrates
author Pereira, Liliana Sofia Carqueijó
author_facet Pereira, Liliana Sofia Carqueijó
author_role author
dc.contributor.author.fl_str_mv Pereira, Liliana Sofia Carqueijó
dc.subject.por.fl_str_mv Gas hydrates
Carbon dioxide
Water
Clusters
Homogeneous nucleation
Heterogeneous nucleation
Kinetics
Nucleation rate
High pressure
Supersaturation
topic Gas hydrates
Carbon dioxide
Water
Clusters
Homogeneous nucleation
Heterogeneous nucleation
Kinetics
Nucleation rate
High pressure
Supersaturation
description Carbon dioxide hydrates are compounds that form through a combination of CO₂ and H₂O molecules. Currently, carbon dioxide hydrates have one of the greatest potential applications in the areas of climate change, such as capture and storage of carbon dioxide or gas replacement in the exploitation of methane hydrates. These compounds have also been a major problem in the oil and natural gas industries because they cause pipeline blockages. To support their applications and solve the industrial problem, understanding the kinetics of carbon dioxide hydrates is one of the current challenges. In this context, this work is focused on the study of kinetics of CO₂ hydrate formation. CO₂ hydrates have been formed in a high pressure apparatus with an appropriate nucleation cell and mixing chamber. The experiments were performed with mixtures of carbon dioxide and water at temperature T = 283.4 ± 0.1 K and pressure p = 9.2 ± 0.1 K MPa, and have a carbon dioxide solubility in water of xCO₂ = 0.0294. The nucleation experiments were performed at 275.9 ± 0.1 K in pressure increments ranging from 9.5 to 33.0 MPa. The apparatus and the methodology were optimized and the results show a high reproducibility of gas hydrate formation. Focusing on carbon dioxide hydrate kinetics, a high dependence on the induction time and the nucleation rate as a function of Δp, is observed. From Δp = 9.5 MPa to Δp = 33.0 MPa, they can vary approximately from 1 to 370 s and from 5.47 x 10⁵ to 1.32 x 10⁸ m⁻³ s⁻¹, respectively. In these conditions, there were observed two nucleation regimes: heterogeneous nucleation, at Δp < 28.0 MPa and homogeneous nucleation, at Δp > 32.5 MPa. The regime change is found at Δp = [28.0 - 32.5] MPa. For heterogeneous nucleation, the kinetic and the thermodynamic parameters calculated are A = [4.9 ± 0.5] x 10⁶ m⁻³ s⁻¹ and B = 1.8 ± 0.2, respectively. For homogeneous nucleation, the kinetic and the thermodynamic parameters calculated are A = 3.9 x 10¹² m⁻³ s⁻¹ and B = 24.7, respectively. These conclusions support the classical nucleation theory. However, a more comprehensive and systematic studies are still needed to understand nucleation process and support these considerations. To solve the current challenges, additional efforts can be made, for example, considering hydrate memory effect when reusing the carbon dioxide and water mixture and other apparatus optimisations.
publishDate 2022
dc.date.none.fl_str_mv 2022-12-19T00:00:00Z
2022-12-19
2024-12-21T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10773/37859
url http://hdl.handle.net/10773/37859
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/embargoedAccess
eu_rights_str_mv embargoedAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799137734571327488