Ductile Fracture: Constrained Strong Ellipticity Condition and Non-Smooth Problems

Detalhes bibliográficos
Autor(a) principal: Areias, P.
Data de Publicação: 2009
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10174/6670
Resumo: Ductile crack formation and growth is caused by the inability of a material to withstand mechanical constraints. Either porosity growth, shear band formations, particle cracking and second phase nucleations will precede ductile damage and macroscopic fracture. Continuum models are inadequate for some stages of constitutive behavior because they cease to be applicable when strong ellipticity is lost. In fact, these stages must allow dissipation in sets of Lebesgue measure zero, such as the Barenblatt's cohesive theory, which is based on a zero resulting stress intensity factor and a cusp-shaped crack tip. Moreover, this dissipation mechanism introduces non-smoothness since the cohesive traction-separation law is a set of non-smooth equations. Usually, these can form a complementarity problem only if strong simplifying assumptions are made. From both the theoretical and numerical perspectives, satisfactory simulations of two-dimensional ductile fracture (including crack intersections and coalescence) are seldom seen in the literature. Often, the strong ellipticity condition is applied without consideration of discretization constraints. Ad-hoc approaches are usually used for the cohesive dissipation, without regard for their non-smooth character. One of the reasons for this, besides the need of some non-trivial geometric calculations and their respective linearization in the implicit case, is that typically high aspect-ratio elements arise, increasing the solution error and the condition number. This can be solved by full remeshing but it becomes costly for real problems and may induce spurious diffusion. Localized tip remeshing has been, therefore, also limited. Lately, local enrichment methods such as the Stong Discontinuity Approach and global methods such as XFEM have been very popular, but are only suited to simple academic problems, and mainly for single crack growth predictions.
id RCAP_2ddfa0137a4a900017a4a4913125cf42
oai_identifier_str oai:dspace.uevora.pt:10174/6670
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Ductile Fracture: Constrained Strong Ellipticity Condition and Non-Smooth ProblemsDuctile crack formation and growth is caused by the inability of a material to withstand mechanical constraints. Either porosity growth, shear band formations, particle cracking and second phase nucleations will precede ductile damage and macroscopic fracture. Continuum models are inadequate for some stages of constitutive behavior because they cease to be applicable when strong ellipticity is lost. In fact, these stages must allow dissipation in sets of Lebesgue measure zero, such as the Barenblatt's cohesive theory, which is based on a zero resulting stress intensity factor and a cusp-shaped crack tip. Moreover, this dissipation mechanism introduces non-smoothness since the cohesive traction-separation law is a set of non-smooth equations. Usually, these can form a complementarity problem only if strong simplifying assumptions are made. From both the theoretical and numerical perspectives, satisfactory simulations of two-dimensional ductile fracture (including crack intersections and coalescence) are seldom seen in the literature. Often, the strong ellipticity condition is applied without consideration of discretization constraints. Ad-hoc approaches are usually used for the cohesive dissipation, without regard for their non-smooth character. One of the reasons for this, besides the need of some non-trivial geometric calculations and their respective linearization in the implicit case, is that typically high aspect-ratio elements arise, increasing the solution error and the condition number. This can be solved by full remeshing but it becomes costly for real problems and may induce spurious diffusion. Localized tip remeshing has been, therefore, also limited. Lately, local enrichment methods such as the Stong Discontinuity Approach and global methods such as XFEM have been very popular, but are only suited to simple academic problems, and mainly for single crack growth predictions.2012-12-07T17:08:14Z2012-12-072009-09-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://hdl.handle.net/10174/6670http://hdl.handle.net/10174/6670enghttp://www1.dem.ist.utl.pt/esmc2009/images//esmc2009%20booklet%20of%20information%2020090904.pdfpmaa@uevora.ptAreias, P.info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-01-03T18:46:18Zoai:dspace.uevora.pt:10174/6670Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T01:01:24.879732Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Ductile Fracture: Constrained Strong Ellipticity Condition and Non-Smooth Problems
title Ductile Fracture: Constrained Strong Ellipticity Condition and Non-Smooth Problems
spellingShingle Ductile Fracture: Constrained Strong Ellipticity Condition and Non-Smooth Problems
Areias, P.
title_short Ductile Fracture: Constrained Strong Ellipticity Condition and Non-Smooth Problems
title_full Ductile Fracture: Constrained Strong Ellipticity Condition and Non-Smooth Problems
title_fullStr Ductile Fracture: Constrained Strong Ellipticity Condition and Non-Smooth Problems
title_full_unstemmed Ductile Fracture: Constrained Strong Ellipticity Condition and Non-Smooth Problems
title_sort Ductile Fracture: Constrained Strong Ellipticity Condition and Non-Smooth Problems
author Areias, P.
author_facet Areias, P.
author_role author
dc.contributor.author.fl_str_mv Areias, P.
description Ductile crack formation and growth is caused by the inability of a material to withstand mechanical constraints. Either porosity growth, shear band formations, particle cracking and second phase nucleations will precede ductile damage and macroscopic fracture. Continuum models are inadequate for some stages of constitutive behavior because they cease to be applicable when strong ellipticity is lost. In fact, these stages must allow dissipation in sets of Lebesgue measure zero, such as the Barenblatt's cohesive theory, which is based on a zero resulting stress intensity factor and a cusp-shaped crack tip. Moreover, this dissipation mechanism introduces non-smoothness since the cohesive traction-separation law is a set of non-smooth equations. Usually, these can form a complementarity problem only if strong simplifying assumptions are made. From both the theoretical and numerical perspectives, satisfactory simulations of two-dimensional ductile fracture (including crack intersections and coalescence) are seldom seen in the literature. Often, the strong ellipticity condition is applied without consideration of discretization constraints. Ad-hoc approaches are usually used for the cohesive dissipation, without regard for their non-smooth character. One of the reasons for this, besides the need of some non-trivial geometric calculations and their respective linearization in the implicit case, is that typically high aspect-ratio elements arise, increasing the solution error and the condition number. This can be solved by full remeshing but it becomes costly for real problems and may induce spurious diffusion. Localized tip remeshing has been, therefore, also limited. Lately, local enrichment methods such as the Stong Discontinuity Approach and global methods such as XFEM have been very popular, but are only suited to simple academic problems, and mainly for single crack growth predictions.
publishDate 2009
dc.date.none.fl_str_mv 2009-09-01T00:00:00Z
2012-12-07T17:08:14Z
2012-12-07
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10174/6670
http://hdl.handle.net/10174/6670
url http://hdl.handle.net/10174/6670
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv http://www1.dem.ist.utl.pt/esmc2009/images//esmc2009%20booklet%20of%20information%2020090904.pdf
pmaa@uevora.pt
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799136497392156672