Continuous selections of solution sets to evolution equations
Autor(a) principal: | |
---|---|
Data de Publicação: | 1991 |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10773/5105 |
Resumo: | We prove the existence of a continuous selection of the multivalued map £ —»& ~(Ç), where ^"(i) is the set of all weak (resp. mild) solutions of the Cauchy problem x(t)€Ax(t) + F(t,x(t)), x(0)=i, assuming that F is Lipschitzian with respect to x and -A is a maximal monotone map (resp. A is the infinitesimal generator of a C0-semigroup). We also establish an analog of Michael's theorem for the solution sets of the Cauchy problem x(t) € F(t, x(t)), x(0) = £, . |
id |
RCAP_2e24f03135b61429a0656fde34a6c5d7 |
---|---|
oai_identifier_str |
oai:ria.ua.pt:10773/5105 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Continuous selections of solution sets to evolution equationsWe prove the existence of a continuous selection of the multivalued map £ —»& ~(Ç), where ^"(i) is the set of all weak (resp. mild) solutions of the Cauchy problem x(t)€Ax(t) + F(t,x(t)), x(0)=i, assuming that F is Lipschitzian with respect to x and -A is a maximal monotone map (resp. A is the infinitesimal generator of a C0-semigroup). We also establish an analog of Michael's theorem for the solution sets of the Cauchy problem x(t) € F(t, x(t)), x(0) = £, .American Mathematical Society2012-01-13T12:23:28Z1991-01-01T00:00:00Z1991info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10773/5105eng0002-9939Staicu, Vasileinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-02-22T11:07:21Zoai:ria.ua.pt:10773/5105Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T02:43:12.183106Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Continuous selections of solution sets to evolution equations |
title |
Continuous selections of solution sets to evolution equations |
spellingShingle |
Continuous selections of solution sets to evolution equations Staicu, Vasile |
title_short |
Continuous selections of solution sets to evolution equations |
title_full |
Continuous selections of solution sets to evolution equations |
title_fullStr |
Continuous selections of solution sets to evolution equations |
title_full_unstemmed |
Continuous selections of solution sets to evolution equations |
title_sort |
Continuous selections of solution sets to evolution equations |
author |
Staicu, Vasile |
author_facet |
Staicu, Vasile |
author_role |
author |
dc.contributor.author.fl_str_mv |
Staicu, Vasile |
description |
We prove the existence of a continuous selection of the multivalued map £ —»& ~(Ç), where ^"(i) is the set of all weak (resp. mild) solutions of the Cauchy problem x(t)€Ax(t) + F(t,x(t)), x(0)=i, assuming that F is Lipschitzian with respect to x and -A is a maximal monotone map (resp. A is the infinitesimal generator of a C0-semigroup). We also establish an analog of Michael's theorem for the solution sets of the Cauchy problem x(t) € F(t, x(t)), x(0) = £, . |
publishDate |
1991 |
dc.date.none.fl_str_mv |
1991-01-01T00:00:00Z 1991 2012-01-13T12:23:28Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10773/5105 |
url |
http://hdl.handle.net/10773/5105 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
0002-9939 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
American Mathematical Society |
publisher.none.fl_str_mv |
American Mathematical Society |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799137481036136449 |