Continuous selections of solution sets to evolution equations

Detalhes bibliográficos
Autor(a) principal: Staicu, Vasile
Data de Publicação: 1991
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10773/5105
Resumo: We prove the existence of a continuous selection of the multivalued map £ —»& ~(Ç), where ^"(i) is the set of all weak (resp. mild) solutions of the Cauchy problem x(t)€Ax(t) + F(t,x(t)), x(0)=i, assuming that F is Lipschitzian with respect to x and -A is a maximal monotone map (resp. A is the infinitesimal generator of a C0-semigroup). We also establish an analog of Michael's theorem for the solution sets of the Cauchy problem x(t) € F(t, x(t)), x(0) = £, .
id RCAP_2e24f03135b61429a0656fde34a6c5d7
oai_identifier_str oai:ria.ua.pt:10773/5105
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Continuous selections of solution sets to evolution equationsWe prove the existence of a continuous selection of the multivalued map £ —»& ~(Ç), where ^"(i) is the set of all weak (resp. mild) solutions of the Cauchy problem x(t)€Ax(t) + F(t,x(t)), x(0)=i, assuming that F is Lipschitzian with respect to x and -A is a maximal monotone map (resp. A is the infinitesimal generator of a C0-semigroup). We also establish an analog of Michael's theorem for the solution sets of the Cauchy problem x(t) € F(t, x(t)), x(0) = £, .American Mathematical Society2012-01-13T12:23:28Z1991-01-01T00:00:00Z1991info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10773/5105eng0002-9939Staicu, Vasileinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-02-22T11:07:21Zoai:ria.ua.pt:10773/5105Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T02:43:12.183106Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Continuous selections of solution sets to evolution equations
title Continuous selections of solution sets to evolution equations
spellingShingle Continuous selections of solution sets to evolution equations
Staicu, Vasile
title_short Continuous selections of solution sets to evolution equations
title_full Continuous selections of solution sets to evolution equations
title_fullStr Continuous selections of solution sets to evolution equations
title_full_unstemmed Continuous selections of solution sets to evolution equations
title_sort Continuous selections of solution sets to evolution equations
author Staicu, Vasile
author_facet Staicu, Vasile
author_role author
dc.contributor.author.fl_str_mv Staicu, Vasile
description We prove the existence of a continuous selection of the multivalued map £ —»& ~(Ç), where ^"(i) is the set of all weak (resp. mild) solutions of the Cauchy problem x(t)€Ax(t) + F(t,x(t)), x(0)=i, assuming that F is Lipschitzian with respect to x and -A is a maximal monotone map (resp. A is the infinitesimal generator of a C0-semigroup). We also establish an analog of Michael's theorem for the solution sets of the Cauchy problem x(t) € F(t, x(t)), x(0) = £, .
publishDate 1991
dc.date.none.fl_str_mv 1991-01-01T00:00:00Z
1991
2012-01-13T12:23:28Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10773/5105
url http://hdl.handle.net/10773/5105
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 0002-9939
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv American Mathematical Society
publisher.none.fl_str_mv American Mathematical Society
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799137481036136449