Rapid artificial intelligence solutions in a pandemic—The COVID-19-20 Lung CT Lesion Segmentation Challenge

Detalhes bibliográficos
Autor(a) principal: R. Roth, Holger
Data de Publicação: 2022
Outros Autores: Xu, Ziyue, Tor-Díez, Carlos, Sanchez Jacob, Ramon, Zember, Jonathan, Molto, Jose, Li, Wenqi, Xu, Sheng, Turkbey, Baris, Turkbey, Evrim, Yang, Dong, Harouni, Ahmed, Riek, Nicola, Hu, Shishuai, Isensee, Fabian, Tang, Claire, Yu, Qinji, Sölter, Jan, Zheng, Tong, Liauchuk, Vitali, Zhou, Ziqi, Hendrik Moltz, Jan, Oliveira, Bruno, Xia, Yong, H. Maier-Hein, Klaus, Li, Qikai, Husch, Andreas, Zhang, Luyang, Kovalev, Vassili, Kang, Li, Hering, Alessa, Vilaça, João L., Flores, Mona, Xu, Daguang, Wood, Bradford, Linguraru, Marius George
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/11110/2547
Resumo: Artificial intelligence (AI) methods for the automatic detection and quantification of COVID-19 lesions in chest computed tomography (CT) might play an important role in the monitoring and management of the disease. We organized an international challenge and competition for the development and comparison of AI algorithms for this task, which we supported with public data and state-of-the-art benchmark methods. Board Certified Radiologists annotated 295 public images from two sources (A and B) for algorithms training ( = 199, source A), validation ( = 50, source A) and testing ( = 23, source A; = 23, source B). There were 1,096 registered teams of which 225 and 98 completed the validation and testing phases, respectively. The challenge showed that AI models could be rapidly designed by diverse teams with the potential to measure disease or facilitate timely and patient-specific interventions. This paper provides an overview and the major outcomes of the COVID-19 Lung CT Lesion Segmentation Challenge — 2020.
id RCAP_2e36b71d83e2a25c0c902bf0582c72f6
oai_identifier_str oai:ciencipca.ipca.pt:11110/2547
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Rapid artificial intelligence solutions in a pandemic—The COVID-19-20 Lung CT Lesion Segmentation ChallengeMedical image segmentationCOVID-19ChallengeArtificial intelligence (AI) methods for the automatic detection and quantification of COVID-19 lesions in chest computed tomography (CT) might play an important role in the monitoring and management of the disease. We organized an international challenge and competition for the development and comparison of AI algorithms for this task, which we supported with public data and state-of-the-art benchmark methods. Board Certified Radiologists annotated 295 public images from two sources (A and B) for algorithms training ( = 199, source A), validation ( = 50, source A) and testing ( = 23, source A; = 23, source B). There were 1,096 registered teams of which 225 and 98 completed the validation and testing phases, respectively. The challenge showed that AI models could be rapidly designed by diverse teams with the potential to measure disease or facilitate timely and patient-specific interventions. This paper provides an overview and the major outcomes of the COVID-19 Lung CT Lesion Segmentation Challenge — 2020.Medical Image Analysis2023-01-17T11:52:39Z2023-01-172022-08-25T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://hdl.handle.net/11110/2547http://hdl.handle.net/11110/2547engR. Roth, HolgerXu, ZiyueTor-Díez, CarlosSanchez Jacob, RamonZember, JonathanMolto, JoseLi, WenqiXu, ShengTurkbey, BarisTurkbey, EvrimYang, DongHarouni, AhmedRiek, NicolaHu, ShishuaiIsensee, FabianTang, ClaireYu, QinjiSölter, JanZheng, TongLiauchuk, VitaliZhou, ZiqiHendrik Moltz, JanOliveira, BrunoXia, YongH. Maier-Hein, KlausLi, QikaiHusch, AndreasZhang, LuyangKovalev, VassiliKang, LiHering, AlessaVilaça, João L.Flores, MonaXu, DaguangWood, BradfordLinguraru, Marius Georgeinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-01-19T04:16:07Zoai:ciencipca.ipca.pt:11110/2547Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T16:45:19.180458Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Rapid artificial intelligence solutions in a pandemic—The COVID-19-20 Lung CT Lesion Segmentation Challenge
title Rapid artificial intelligence solutions in a pandemic—The COVID-19-20 Lung CT Lesion Segmentation Challenge
spellingShingle Rapid artificial intelligence solutions in a pandemic—The COVID-19-20 Lung CT Lesion Segmentation Challenge
R. Roth, Holger
Medical image segmentation
COVID-19
Challenge
title_short Rapid artificial intelligence solutions in a pandemic—The COVID-19-20 Lung CT Lesion Segmentation Challenge
title_full Rapid artificial intelligence solutions in a pandemic—The COVID-19-20 Lung CT Lesion Segmentation Challenge
title_fullStr Rapid artificial intelligence solutions in a pandemic—The COVID-19-20 Lung CT Lesion Segmentation Challenge
title_full_unstemmed Rapid artificial intelligence solutions in a pandemic—The COVID-19-20 Lung CT Lesion Segmentation Challenge
title_sort Rapid artificial intelligence solutions in a pandemic—The COVID-19-20 Lung CT Lesion Segmentation Challenge
author R. Roth, Holger
author_facet R. Roth, Holger
Xu, Ziyue
Tor-Díez, Carlos
Sanchez Jacob, Ramon
Zember, Jonathan
Molto, Jose
Li, Wenqi
Xu, Sheng
Turkbey, Baris
Turkbey, Evrim
Yang, Dong
Harouni, Ahmed
Riek, Nicola
Hu, Shishuai
Isensee, Fabian
Tang, Claire
Yu, Qinji
Sölter, Jan
Zheng, Tong
Liauchuk, Vitali
Zhou, Ziqi
Hendrik Moltz, Jan
Oliveira, Bruno
Xia, Yong
H. Maier-Hein, Klaus
Li, Qikai
Husch, Andreas
Zhang, Luyang
Kovalev, Vassili
Kang, Li
Hering, Alessa
Vilaça, João L.
Flores, Mona
Xu, Daguang
Wood, Bradford
Linguraru, Marius George
author_role author
author2 Xu, Ziyue
Tor-Díez, Carlos
Sanchez Jacob, Ramon
Zember, Jonathan
Molto, Jose
Li, Wenqi
Xu, Sheng
Turkbey, Baris
Turkbey, Evrim
Yang, Dong
Harouni, Ahmed
Riek, Nicola
Hu, Shishuai
Isensee, Fabian
Tang, Claire
Yu, Qinji
Sölter, Jan
Zheng, Tong
Liauchuk, Vitali
Zhou, Ziqi
Hendrik Moltz, Jan
Oliveira, Bruno
Xia, Yong
H. Maier-Hein, Klaus
Li, Qikai
Husch, Andreas
Zhang, Luyang
Kovalev, Vassili
Kang, Li
Hering, Alessa
Vilaça, João L.
Flores, Mona
Xu, Daguang
Wood, Bradford
Linguraru, Marius George
author2_role author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
dc.contributor.author.fl_str_mv R. Roth, Holger
Xu, Ziyue
Tor-Díez, Carlos
Sanchez Jacob, Ramon
Zember, Jonathan
Molto, Jose
Li, Wenqi
Xu, Sheng
Turkbey, Baris
Turkbey, Evrim
Yang, Dong
Harouni, Ahmed
Riek, Nicola
Hu, Shishuai
Isensee, Fabian
Tang, Claire
Yu, Qinji
Sölter, Jan
Zheng, Tong
Liauchuk, Vitali
Zhou, Ziqi
Hendrik Moltz, Jan
Oliveira, Bruno
Xia, Yong
H. Maier-Hein, Klaus
Li, Qikai
Husch, Andreas
Zhang, Luyang
Kovalev, Vassili
Kang, Li
Hering, Alessa
Vilaça, João L.
Flores, Mona
Xu, Daguang
Wood, Bradford
Linguraru, Marius George
dc.subject.por.fl_str_mv Medical image segmentation
COVID-19
Challenge
topic Medical image segmentation
COVID-19
Challenge
description Artificial intelligence (AI) methods for the automatic detection and quantification of COVID-19 lesions in chest computed tomography (CT) might play an important role in the monitoring and management of the disease. We organized an international challenge and competition for the development and comparison of AI algorithms for this task, which we supported with public data and state-of-the-art benchmark methods. Board Certified Radiologists annotated 295 public images from two sources (A and B) for algorithms training ( = 199, source A), validation ( = 50, source A) and testing ( = 23, source A; = 23, source B). There were 1,096 registered teams of which 225 and 98 completed the validation and testing phases, respectively. The challenge showed that AI models could be rapidly designed by diverse teams with the potential to measure disease or facilitate timely and patient-specific interventions. This paper provides an overview and the major outcomes of the COVID-19 Lung CT Lesion Segmentation Challenge — 2020.
publishDate 2022
dc.date.none.fl_str_mv 2022-08-25T00:00:00Z
2023-01-17T11:52:39Z
2023-01-17
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/11110/2547
http://hdl.handle.net/11110/2547
url http://hdl.handle.net/11110/2547
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Medical Image Analysis
publisher.none.fl_str_mv Medical Image Analysis
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1817553500425420801