Rapid artificial intelligence solutions in a pandemic—The COVID-19-20 Lung CT Lesion Segmentation Challenge
Autor(a) principal: | |
---|---|
Data de Publicação: | 2022 |
Outros Autores: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/11110/2547 |
Resumo: | Artificial intelligence (AI) methods for the automatic detection and quantification of COVID-19 lesions in chest computed tomography (CT) might play an important role in the monitoring and management of the disease. We organized an international challenge and competition for the development and comparison of AI algorithms for this task, which we supported with public data and state-of-the-art benchmark methods. Board Certified Radiologists annotated 295 public images from two sources (A and B) for algorithms training ( = 199, source A), validation ( = 50, source A) and testing ( = 23, source A; = 23, source B). There were 1,096 registered teams of which 225 and 98 completed the validation and testing phases, respectively. The challenge showed that AI models could be rapidly designed by diverse teams with the potential to measure disease or facilitate timely and patient-specific interventions. This paper provides an overview and the major outcomes of the COVID-19 Lung CT Lesion Segmentation Challenge — 2020. |
id |
RCAP_2e36b71d83e2a25c0c902bf0582c72f6 |
---|---|
oai_identifier_str |
oai:ciencipca.ipca.pt:11110/2547 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Rapid artificial intelligence solutions in a pandemic—The COVID-19-20 Lung CT Lesion Segmentation ChallengeMedical image segmentationCOVID-19ChallengeArtificial intelligence (AI) methods for the automatic detection and quantification of COVID-19 lesions in chest computed tomography (CT) might play an important role in the monitoring and management of the disease. We organized an international challenge and competition for the development and comparison of AI algorithms for this task, which we supported with public data and state-of-the-art benchmark methods. Board Certified Radiologists annotated 295 public images from two sources (A and B) for algorithms training ( = 199, source A), validation ( = 50, source A) and testing ( = 23, source A; = 23, source B). There were 1,096 registered teams of which 225 and 98 completed the validation and testing phases, respectively. The challenge showed that AI models could be rapidly designed by diverse teams with the potential to measure disease or facilitate timely and patient-specific interventions. This paper provides an overview and the major outcomes of the COVID-19 Lung CT Lesion Segmentation Challenge — 2020.Medical Image Analysis2023-01-17T11:52:39Z2023-01-172022-08-25T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://hdl.handle.net/11110/2547http://hdl.handle.net/11110/2547engR. Roth, HolgerXu, ZiyueTor-Díez, CarlosSanchez Jacob, RamonZember, JonathanMolto, JoseLi, WenqiXu, ShengTurkbey, BarisTurkbey, EvrimYang, DongHarouni, AhmedRiek, NicolaHu, ShishuaiIsensee, FabianTang, ClaireYu, QinjiSölter, JanZheng, TongLiauchuk, VitaliZhou, ZiqiHendrik Moltz, JanOliveira, BrunoXia, YongH. Maier-Hein, KlausLi, QikaiHusch, AndreasZhang, LuyangKovalev, VassiliKang, LiHering, AlessaVilaça, João L.Flores, MonaXu, DaguangWood, BradfordLinguraru, Marius Georgeinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-01-19T04:16:07Zoai:ciencipca.ipca.pt:11110/2547Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T16:45:19.180458Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Rapid artificial intelligence solutions in a pandemic—The COVID-19-20 Lung CT Lesion Segmentation Challenge |
title |
Rapid artificial intelligence solutions in a pandemic—The COVID-19-20 Lung CT Lesion Segmentation Challenge |
spellingShingle |
Rapid artificial intelligence solutions in a pandemic—The COVID-19-20 Lung CT Lesion Segmentation Challenge R. Roth, Holger Medical image segmentation COVID-19 Challenge |
title_short |
Rapid artificial intelligence solutions in a pandemic—The COVID-19-20 Lung CT Lesion Segmentation Challenge |
title_full |
Rapid artificial intelligence solutions in a pandemic—The COVID-19-20 Lung CT Lesion Segmentation Challenge |
title_fullStr |
Rapid artificial intelligence solutions in a pandemic—The COVID-19-20 Lung CT Lesion Segmentation Challenge |
title_full_unstemmed |
Rapid artificial intelligence solutions in a pandemic—The COVID-19-20 Lung CT Lesion Segmentation Challenge |
title_sort |
Rapid artificial intelligence solutions in a pandemic—The COVID-19-20 Lung CT Lesion Segmentation Challenge |
author |
R. Roth, Holger |
author_facet |
R. Roth, Holger Xu, Ziyue Tor-Díez, Carlos Sanchez Jacob, Ramon Zember, Jonathan Molto, Jose Li, Wenqi Xu, Sheng Turkbey, Baris Turkbey, Evrim Yang, Dong Harouni, Ahmed Riek, Nicola Hu, Shishuai Isensee, Fabian Tang, Claire Yu, Qinji Sölter, Jan Zheng, Tong Liauchuk, Vitali Zhou, Ziqi Hendrik Moltz, Jan Oliveira, Bruno Xia, Yong H. Maier-Hein, Klaus Li, Qikai Husch, Andreas Zhang, Luyang Kovalev, Vassili Kang, Li Hering, Alessa Vilaça, João L. Flores, Mona Xu, Daguang Wood, Bradford Linguraru, Marius George |
author_role |
author |
author2 |
Xu, Ziyue Tor-Díez, Carlos Sanchez Jacob, Ramon Zember, Jonathan Molto, Jose Li, Wenqi Xu, Sheng Turkbey, Baris Turkbey, Evrim Yang, Dong Harouni, Ahmed Riek, Nicola Hu, Shishuai Isensee, Fabian Tang, Claire Yu, Qinji Sölter, Jan Zheng, Tong Liauchuk, Vitali Zhou, Ziqi Hendrik Moltz, Jan Oliveira, Bruno Xia, Yong H. Maier-Hein, Klaus Li, Qikai Husch, Andreas Zhang, Luyang Kovalev, Vassili Kang, Li Hering, Alessa Vilaça, João L. Flores, Mona Xu, Daguang Wood, Bradford Linguraru, Marius George |
author2_role |
author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author |
dc.contributor.author.fl_str_mv |
R. Roth, Holger Xu, Ziyue Tor-Díez, Carlos Sanchez Jacob, Ramon Zember, Jonathan Molto, Jose Li, Wenqi Xu, Sheng Turkbey, Baris Turkbey, Evrim Yang, Dong Harouni, Ahmed Riek, Nicola Hu, Shishuai Isensee, Fabian Tang, Claire Yu, Qinji Sölter, Jan Zheng, Tong Liauchuk, Vitali Zhou, Ziqi Hendrik Moltz, Jan Oliveira, Bruno Xia, Yong H. Maier-Hein, Klaus Li, Qikai Husch, Andreas Zhang, Luyang Kovalev, Vassili Kang, Li Hering, Alessa Vilaça, João L. Flores, Mona Xu, Daguang Wood, Bradford Linguraru, Marius George |
dc.subject.por.fl_str_mv |
Medical image segmentation COVID-19 Challenge |
topic |
Medical image segmentation COVID-19 Challenge |
description |
Artificial intelligence (AI) methods for the automatic detection and quantification of COVID-19 lesions in chest computed tomography (CT) might play an important role in the monitoring and management of the disease. We organized an international challenge and competition for the development and comparison of AI algorithms for this task, which we supported with public data and state-of-the-art benchmark methods. Board Certified Radiologists annotated 295 public images from two sources (A and B) for algorithms training ( = 199, source A), validation ( = 50, source A) and testing ( = 23, source A; = 23, source B). There were 1,096 registered teams of which 225 and 98 completed the validation and testing phases, respectively. The challenge showed that AI models could be rapidly designed by diverse teams with the potential to measure disease or facilitate timely and patient-specific interventions. This paper provides an overview and the major outcomes of the COVID-19 Lung CT Lesion Segmentation Challenge — 2020. |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-08-25T00:00:00Z 2023-01-17T11:52:39Z 2023-01-17 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/11110/2547 http://hdl.handle.net/11110/2547 |
url |
http://hdl.handle.net/11110/2547 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Medical Image Analysis |
publisher.none.fl_str_mv |
Medical Image Analysis |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1817553500425420801 |