Quantitative image analysis of polyhydroxyalkanoates inclusions from microbial mixed cultures under different SBR operation strategies
Autor(a) principal: | |
---|---|
Data de Publicação: | 2017 |
Outros Autores: | , , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | https://hdl.handle.net/1822/47494 |
Resumo: | Polyhydroxyalkanoates (PHAs) produced from mixed microbial cultures (MMC), regarded as potential substitutes of petrochemical plastics, can be found as intracellular granules in various microorganisms under limited nutrient conditions and excess of carbon source. PHA is traditionally quantified by laborious and time-consuming chromatography analysis, and a simpler and faster method to assess PHA contents from MMC, such as quantitative image analysis (QIA), is of great interest. The main purpose of the present work was to upgrade a previously developed QIA methodology (Mesquita et al., 2013a, 2015) for MMC intracellular PHA contents quantification, increase the studied intracellular PHA concentration range and extend to different sequencing batch reactor (SBR) operation strategies. Therefore, the operation of a new aerobic dynamic feeding (ADF) SBR allowed further extending the studied operating conditions, dataset, and range of the MMC intracellular PHA contents from the previously reported anaerobic/aerobic cycle SBR. Nile Blue A (NBA) staining was employed for epifluorescence microscope visualization and image acquisition, further fed to a custom developed QIA. Data from each of the feast and famine cycles of both SBR were individually processed using chemometrics analysis, obtaining the correspondent partial least squares (PLS) models. The PHA concentrations determined from PLS models were further plotted against the results obtained in the standard chromatographic method. For both SBR the predicted ability was higher at the end of the feast stage than for the famine stage. Indeed, an independent feast and famine QIA data treatment was found to be fundamental to obtain the best prediction abilities. Furthermore, a promising overall correlation (R2 of 0.83) could be found combining the overall QIA data regarding the PHA prediction up to a concentration of 1785.1 mgL-1 (37.3 wt%). Thus, the results confirm that the presented QIA methodology can be seen as promising for estimating higher intracellular PHA concentrations for a larger reactors operation systems and further extending the prediction range of previous studies. |
id |
RCAP_2e4f64b27f6dfcef6414857a7a66dc61 |
---|---|
oai_identifier_str |
oai:repositorium.sdum.uminho.pt:1822/47494 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Quantitative image analysis of polyhydroxyalkanoates inclusions from microbial mixed cultures under different SBR operation strategiesSequencing batch reactors (SBR)Mixed microbial cultures (MMC)Polyhydroxyalkanoates (PHA)Nile BlueA (NBA) stainingQuantitative image analysis (QIA)Partial least squares (PLS)Science & TechnologyPolyhydroxyalkanoates (PHAs) produced from mixed microbial cultures (MMC), regarded as potential substitutes of petrochemical plastics, can be found as intracellular granules in various microorganisms under limited nutrient conditions and excess of carbon source. PHA is traditionally quantified by laborious and time-consuming chromatography analysis, and a simpler and faster method to assess PHA contents from MMC, such as quantitative image analysis (QIA), is of great interest. The main purpose of the present work was to upgrade a previously developed QIA methodology (Mesquita et al., 2013a, 2015) for MMC intracellular PHA contents quantification, increase the studied intracellular PHA concentration range and extend to different sequencing batch reactor (SBR) operation strategies. Therefore, the operation of a new aerobic dynamic feeding (ADF) SBR allowed further extending the studied operating conditions, dataset, and range of the MMC intracellular PHA contents from the previously reported anaerobic/aerobic cycle SBR. Nile Blue A (NBA) staining was employed for epifluorescence microscope visualization and image acquisition, further fed to a custom developed QIA. Data from each of the feast and famine cycles of both SBR were individually processed using chemometrics analysis, obtaining the correspondent partial least squares (PLS) models. The PHA concentrations determined from PLS models were further plotted against the results obtained in the standard chromatographic method. For both SBR the predicted ability was higher at the end of the feast stage than for the famine stage. Indeed, an independent feast and famine QIA data treatment was found to be fundamental to obtain the best prediction abilities. Furthermore, a promising overall correlation (R2 of 0.83) could be found combining the overall QIA data regarding the PHA prediction up to a concentration of 1785.1 mgL-1 (37.3 wt%). Thus, the results confirm that the presented QIA methodology can be seen as promising for estimating higher intracellular PHA concentrations for a larger reactors operation systems and further extending the prediction range of previous studies.This study was supported by the Portuguese Foundation for Science and Technology (FCT) under the scope of the strategic funding of UID/BIO/04469/2013 unit and COMPETE 2020 (POCI-01-0145-FEDER-006684) and BioTecNorte operation (NORTE01-0145-FEDER-000004) funded by European Regional Development Fundunder the scope ofNorte2020 - ProgramaOperacional Regional do Norte.The authors also acknowledge the financial support to Cristiano S. Leal (PTDC/EBB-EBI/103147/2008, FCOMP-01-0124-FEDER009704) and Daniela P. Mesquita through the FCT postdoctoral grant (SFRH/BPD/82558/2011).info:eu-repo/semantics/publishedVersionSpringer NatureUniversidade do MinhoAmaral, A. LuísAbreu, H.Leal, C.Mesquita, Daniela P.Castro, L. M.Ferreira, Eugénio C.2017-062017-06-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttps://hdl.handle.net/1822/47494engAmaral, A. Luís; Abreu, H.; Leal, C.; Mesquita, Daniela P.; Castro, L. M.; Ferreira, Eugénio C., Quantitative image analysis of polyhydroxyalkanoates inclusions from microbial mixed cultures under different SBR operation strategies. Environmental Science and Pollution Research, 24(17), 15148-15156, 20170944-13441614-749910.1007/s11356-017-9132-028500546http://www.springer.com/environment/journal/11356info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-03-16T01:19:54Zoai:repositorium.sdum.uminho.pt:1822/47494Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T19:49:10.050171Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Quantitative image analysis of polyhydroxyalkanoates inclusions from microbial mixed cultures under different SBR operation strategies |
title |
Quantitative image analysis of polyhydroxyalkanoates inclusions from microbial mixed cultures under different SBR operation strategies |
spellingShingle |
Quantitative image analysis of polyhydroxyalkanoates inclusions from microbial mixed cultures under different SBR operation strategies Amaral, A. Luís Sequencing batch reactors (SBR) Mixed microbial cultures (MMC) Polyhydroxyalkanoates (PHA) Nile BlueA (NBA) staining Quantitative image analysis (QIA) Partial least squares (PLS) Science & Technology |
title_short |
Quantitative image analysis of polyhydroxyalkanoates inclusions from microbial mixed cultures under different SBR operation strategies |
title_full |
Quantitative image analysis of polyhydroxyalkanoates inclusions from microbial mixed cultures under different SBR operation strategies |
title_fullStr |
Quantitative image analysis of polyhydroxyalkanoates inclusions from microbial mixed cultures under different SBR operation strategies |
title_full_unstemmed |
Quantitative image analysis of polyhydroxyalkanoates inclusions from microbial mixed cultures under different SBR operation strategies |
title_sort |
Quantitative image analysis of polyhydroxyalkanoates inclusions from microbial mixed cultures under different SBR operation strategies |
author |
Amaral, A. Luís |
author_facet |
Amaral, A. Luís Abreu, H. Leal, C. Mesquita, Daniela P. Castro, L. M. Ferreira, Eugénio C. |
author_role |
author |
author2 |
Abreu, H. Leal, C. Mesquita, Daniela P. Castro, L. M. Ferreira, Eugénio C. |
author2_role |
author author author author author |
dc.contributor.none.fl_str_mv |
Universidade do Minho |
dc.contributor.author.fl_str_mv |
Amaral, A. Luís Abreu, H. Leal, C. Mesquita, Daniela P. Castro, L. M. Ferreira, Eugénio C. |
dc.subject.por.fl_str_mv |
Sequencing batch reactors (SBR) Mixed microbial cultures (MMC) Polyhydroxyalkanoates (PHA) Nile BlueA (NBA) staining Quantitative image analysis (QIA) Partial least squares (PLS) Science & Technology |
topic |
Sequencing batch reactors (SBR) Mixed microbial cultures (MMC) Polyhydroxyalkanoates (PHA) Nile BlueA (NBA) staining Quantitative image analysis (QIA) Partial least squares (PLS) Science & Technology |
description |
Polyhydroxyalkanoates (PHAs) produced from mixed microbial cultures (MMC), regarded as potential substitutes of petrochemical plastics, can be found as intracellular granules in various microorganisms under limited nutrient conditions and excess of carbon source. PHA is traditionally quantified by laborious and time-consuming chromatography analysis, and a simpler and faster method to assess PHA contents from MMC, such as quantitative image analysis (QIA), is of great interest. The main purpose of the present work was to upgrade a previously developed QIA methodology (Mesquita et al., 2013a, 2015) for MMC intracellular PHA contents quantification, increase the studied intracellular PHA concentration range and extend to different sequencing batch reactor (SBR) operation strategies. Therefore, the operation of a new aerobic dynamic feeding (ADF) SBR allowed further extending the studied operating conditions, dataset, and range of the MMC intracellular PHA contents from the previously reported anaerobic/aerobic cycle SBR. Nile Blue A (NBA) staining was employed for epifluorescence microscope visualization and image acquisition, further fed to a custom developed QIA. Data from each of the feast and famine cycles of both SBR were individually processed using chemometrics analysis, obtaining the correspondent partial least squares (PLS) models. The PHA concentrations determined from PLS models were further plotted against the results obtained in the standard chromatographic method. For both SBR the predicted ability was higher at the end of the feast stage than for the famine stage. Indeed, an independent feast and famine QIA data treatment was found to be fundamental to obtain the best prediction abilities. Furthermore, a promising overall correlation (R2 of 0.83) could be found combining the overall QIA data regarding the PHA prediction up to a concentration of 1785.1 mgL-1 (37.3 wt%). Thus, the results confirm that the presented QIA methodology can be seen as promising for estimating higher intracellular PHA concentrations for a larger reactors operation systems and further extending the prediction range of previous studies. |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017-06 2017-06-01T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://hdl.handle.net/1822/47494 |
url |
https://hdl.handle.net/1822/47494 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Amaral, A. Luís; Abreu, H.; Leal, C.; Mesquita, Daniela P.; Castro, L. M.; Ferreira, Eugénio C., Quantitative image analysis of polyhydroxyalkanoates inclusions from microbial mixed cultures under different SBR operation strategies. Environmental Science and Pollution Research, 24(17), 15148-15156, 2017 0944-1344 1614-7499 10.1007/s11356-017-9132-0 28500546 http://www.springer.com/environment/journal/11356 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Springer Nature |
publisher.none.fl_str_mv |
Springer Nature |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799133071650324480 |