Renormalization of Diophantine skew flows, with applications to the reducibility problem

Detalhes bibliográficos
Autor(a) principal: Koch, Hans
Data de Publicação: 2008
Outros Autores: Dias, João Lopes
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10400.5/29043
Resumo: We introduce a renormalization group framework for the study of quasiperiodic skew flows on Lie groups of real or complex ռxռ matrices, for arbitrary Diophantine frequency vectors in ℝᵈ and dimensions d,n. In cases where the Lie algebra component of the vector field is small, it is shown that there exists an analytic manifold of reducible skew systems, for each Diophantine frequency vector. More general near-linear flows are mapped to this case by increasing the dimension of the torus. This strategy is applied for the group of unimodular 2x2 matrices, where the stable manifold is identified with the set of skew systems having a fixed fibered rotation number. Our results apply to vector fields of class Cγ, with γ depending on the number of independent frequencies, and on the Diophantine exponent.
id RCAP_2e539a0ba9f822fe77c4ac4e75f2e7ec
oai_identifier_str oai:www.repository.utl.pt:10400.5/29043
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Renormalization of Diophantine skew flows, with applications to the reducibility problemHamiltonian FlowsDiophantine ApproximationProbabilistic PerspectiveDifferential EquationsWe introduce a renormalization group framework for the study of quasiperiodic skew flows on Lie groups of real or complex ռxռ matrices, for arbitrary Diophantine frequency vectors in ℝᵈ and dimensions d,n. In cases where the Lie algebra component of the vector field is small, it is shown that there exists an analytic manifold of reducible skew systems, for each Diophantine frequency vector. More general near-linear flows are mapped to this case by increasing the dimension of the torus. This strategy is applied for the group of unimodular 2x2 matrices, where the stable manifold is identified with the set of skew systems having a fixed fibered rotation number. Our results apply to vector fields of class Cγ, with γ depending on the number of independent frequencies, and on the Diophantine exponent.American Institute of Mathematical Sciences (AIMS)Repositório da Universidade de LisboaKoch, HansDias, João Lopes2023-10-13T13:49:34Z20082008-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10400.5/29043engKoch, Hans and João Lopes Dias .(2008). “Renormalization of Diophantine skew flows, with applications to the reducibility problem”. Discrete and Continuous Dynamical Systems, Volume 21, Number 2: pp. 477–500 .(Search PDF in 2023)5359-5374info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-10-15T01:33:57Zoai:www.repository.utl.pt:10400.5/29043Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T20:35:46.698178Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Renormalization of Diophantine skew flows, with applications to the reducibility problem
title Renormalization of Diophantine skew flows, with applications to the reducibility problem
spellingShingle Renormalization of Diophantine skew flows, with applications to the reducibility problem
Koch, Hans
Hamiltonian Flows
Diophantine Approximation
Probabilistic Perspective
Differential Equations
title_short Renormalization of Diophantine skew flows, with applications to the reducibility problem
title_full Renormalization of Diophantine skew flows, with applications to the reducibility problem
title_fullStr Renormalization of Diophantine skew flows, with applications to the reducibility problem
title_full_unstemmed Renormalization of Diophantine skew flows, with applications to the reducibility problem
title_sort Renormalization of Diophantine skew flows, with applications to the reducibility problem
author Koch, Hans
author_facet Koch, Hans
Dias, João Lopes
author_role author
author2 Dias, João Lopes
author2_role author
dc.contributor.none.fl_str_mv Repositório da Universidade de Lisboa
dc.contributor.author.fl_str_mv Koch, Hans
Dias, João Lopes
dc.subject.por.fl_str_mv Hamiltonian Flows
Diophantine Approximation
Probabilistic Perspective
Differential Equations
topic Hamiltonian Flows
Diophantine Approximation
Probabilistic Perspective
Differential Equations
description We introduce a renormalization group framework for the study of quasiperiodic skew flows on Lie groups of real or complex ռxռ matrices, for arbitrary Diophantine frequency vectors in ℝᵈ and dimensions d,n. In cases where the Lie algebra component of the vector field is small, it is shown that there exists an analytic manifold of reducible skew systems, for each Diophantine frequency vector. More general near-linear flows are mapped to this case by increasing the dimension of the torus. This strategy is applied for the group of unimodular 2x2 matrices, where the stable manifold is identified with the set of skew systems having a fixed fibered rotation number. Our results apply to vector fields of class Cγ, with γ depending on the number of independent frequencies, and on the Diophantine exponent.
publishDate 2008
dc.date.none.fl_str_mv 2008
2008-01-01T00:00:00Z
2023-10-13T13:49:34Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10400.5/29043
url http://hdl.handle.net/10400.5/29043
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Koch, Hans and João Lopes Dias .(2008). “Renormalization of Diophantine skew flows, with applications to the reducibility problem”. Discrete and Continuous Dynamical Systems, Volume 21, Number 2: pp. 477–500 .(Search PDF in 2023)
5359-5374
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv American Institute of Mathematical Sciences (AIMS)
publisher.none.fl_str_mv American Institute of Mathematical Sciences (AIMS)
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799133620631240704