Renormalization of Diophantine skew flows, with applications to the reducibility problem
Autor(a) principal: | |
---|---|
Data de Publicação: | 2008 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10400.5/29043 |
Resumo: | We introduce a renormalization group framework for the study of quasiperiodic skew flows on Lie groups of real or complex ռxռ matrices, for arbitrary Diophantine frequency vectors in ℝᵈ and dimensions d,n. In cases where the Lie algebra component of the vector field is small, it is shown that there exists an analytic manifold of reducible skew systems, for each Diophantine frequency vector. More general near-linear flows are mapped to this case by increasing the dimension of the torus. This strategy is applied for the group of unimodular 2x2 matrices, where the stable manifold is identified with the set of skew systems having a fixed fibered rotation number. Our results apply to vector fields of class Cγ, with γ depending on the number of independent frequencies, and on the Diophantine exponent. |
id |
RCAP_2e539a0ba9f822fe77c4ac4e75f2e7ec |
---|---|
oai_identifier_str |
oai:www.repository.utl.pt:10400.5/29043 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Renormalization of Diophantine skew flows, with applications to the reducibility problemHamiltonian FlowsDiophantine ApproximationProbabilistic PerspectiveDifferential EquationsWe introduce a renormalization group framework for the study of quasiperiodic skew flows on Lie groups of real or complex ռxռ matrices, for arbitrary Diophantine frequency vectors in ℝᵈ and dimensions d,n. In cases where the Lie algebra component of the vector field is small, it is shown that there exists an analytic manifold of reducible skew systems, for each Diophantine frequency vector. More general near-linear flows are mapped to this case by increasing the dimension of the torus. This strategy is applied for the group of unimodular 2x2 matrices, where the stable manifold is identified with the set of skew systems having a fixed fibered rotation number. Our results apply to vector fields of class Cγ, with γ depending on the number of independent frequencies, and on the Diophantine exponent.American Institute of Mathematical Sciences (AIMS)Repositório da Universidade de LisboaKoch, HansDias, João Lopes2023-10-13T13:49:34Z20082008-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10400.5/29043engKoch, Hans and João Lopes Dias .(2008). “Renormalization of Diophantine skew flows, with applications to the reducibility problem”. Discrete and Continuous Dynamical Systems, Volume 21, Number 2: pp. 477–500 .(Search PDF in 2023)5359-5374info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-10-15T01:33:57Zoai:www.repository.utl.pt:10400.5/29043Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T20:35:46.698178Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Renormalization of Diophantine skew flows, with applications to the reducibility problem |
title |
Renormalization of Diophantine skew flows, with applications to the reducibility problem |
spellingShingle |
Renormalization of Diophantine skew flows, with applications to the reducibility problem Koch, Hans Hamiltonian Flows Diophantine Approximation Probabilistic Perspective Differential Equations |
title_short |
Renormalization of Diophantine skew flows, with applications to the reducibility problem |
title_full |
Renormalization of Diophantine skew flows, with applications to the reducibility problem |
title_fullStr |
Renormalization of Diophantine skew flows, with applications to the reducibility problem |
title_full_unstemmed |
Renormalization of Diophantine skew flows, with applications to the reducibility problem |
title_sort |
Renormalization of Diophantine skew flows, with applications to the reducibility problem |
author |
Koch, Hans |
author_facet |
Koch, Hans Dias, João Lopes |
author_role |
author |
author2 |
Dias, João Lopes |
author2_role |
author |
dc.contributor.none.fl_str_mv |
Repositório da Universidade de Lisboa |
dc.contributor.author.fl_str_mv |
Koch, Hans Dias, João Lopes |
dc.subject.por.fl_str_mv |
Hamiltonian Flows Diophantine Approximation Probabilistic Perspective Differential Equations |
topic |
Hamiltonian Flows Diophantine Approximation Probabilistic Perspective Differential Equations |
description |
We introduce a renormalization group framework for the study of quasiperiodic skew flows on Lie groups of real or complex ռxռ matrices, for arbitrary Diophantine frequency vectors in ℝᵈ and dimensions d,n. In cases where the Lie algebra component of the vector field is small, it is shown that there exists an analytic manifold of reducible skew systems, for each Diophantine frequency vector. More general near-linear flows are mapped to this case by increasing the dimension of the torus. This strategy is applied for the group of unimodular 2x2 matrices, where the stable manifold is identified with the set of skew systems having a fixed fibered rotation number. Our results apply to vector fields of class Cγ, with γ depending on the number of independent frequencies, and on the Diophantine exponent. |
publishDate |
2008 |
dc.date.none.fl_str_mv |
2008 2008-01-01T00:00:00Z 2023-10-13T13:49:34Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10400.5/29043 |
url |
http://hdl.handle.net/10400.5/29043 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Koch, Hans and João Lopes Dias .(2008). “Renormalization of Diophantine skew flows, with applications to the reducibility problem”. Discrete and Continuous Dynamical Systems, Volume 21, Number 2: pp. 477–500 .(Search PDF in 2023) 5359-5374 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
American Institute of Mathematical Sciences (AIMS) |
publisher.none.fl_str_mv |
American Institute of Mathematical Sciences (AIMS) |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799133620631240704 |