A semi-automatic approach to code smells detection

Detalhes bibliográficos
Autor(a) principal: Pessoa, Tiago Alexandre Simões
Data de Publicação: 2011
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10362/13312
Resumo: Eradication of code smells is often pointed out as a way to improve readability, extensibility and design in existing software. However, code smell detection remains time consuming and error-prone, partly due to the inherent subjectivity of the detection processes presently available. In view of mitigating the subjectivity problem, this dissertation presents a tool that automates a technique for the detection and assessment of code smells in Java source code, developed as an Eclipse plugin. The technique is based upon a Binary Logistic Regression model that uses complexity metrics as independent variables and is calibrated by expert‟s knowledge. An overview of the technique is provided, the tool is described and validated by an example case study.
id RCAP_2eaa8645d692c52bbc67d3f31eb1c9b6
oai_identifier_str oai:run.unl.pt:10362/13312
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling A semi-automatic approach to code smells detectionAutomated software engineeringRefactoringCode smellsEmpirical evaluationMetricsEradication of code smells is often pointed out as a way to improve readability, extensibility and design in existing software. However, code smell detection remains time consuming and error-prone, partly due to the inherent subjectivity of the detection processes presently available. In view of mitigating the subjectivity problem, this dissertation presents a tool that automates a technique for the detection and assessment of code smells in Java source code, developed as an Eclipse plugin. The technique is based upon a Binary Logistic Regression model that uses complexity metrics as independent variables and is calibrated by expert‟s knowledge. An overview of the technique is provided, the tool is described and validated by an example case study.Abreu, FernandoMonteiro, Miguel P.RUNPessoa, Tiago Alexandre Simões2014-10-20T15:37:35Z2011-092014-102011-09-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10362/13312enginfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-03-11T03:48:08Zoai:run.unl.pt:10362/13312Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:21:14.461857Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv A semi-automatic approach to code smells detection
title A semi-automatic approach to code smells detection
spellingShingle A semi-automatic approach to code smells detection
Pessoa, Tiago Alexandre Simões
Automated software engineering
Refactoring
Code smells
Empirical evaluation
Metrics
title_short A semi-automatic approach to code smells detection
title_full A semi-automatic approach to code smells detection
title_fullStr A semi-automatic approach to code smells detection
title_full_unstemmed A semi-automatic approach to code smells detection
title_sort A semi-automatic approach to code smells detection
author Pessoa, Tiago Alexandre Simões
author_facet Pessoa, Tiago Alexandre Simões
author_role author
dc.contributor.none.fl_str_mv Abreu, Fernando
Monteiro, Miguel P.
RUN
dc.contributor.author.fl_str_mv Pessoa, Tiago Alexandre Simões
dc.subject.por.fl_str_mv Automated software engineering
Refactoring
Code smells
Empirical evaluation
Metrics
topic Automated software engineering
Refactoring
Code smells
Empirical evaluation
Metrics
description Eradication of code smells is often pointed out as a way to improve readability, extensibility and design in existing software. However, code smell detection remains time consuming and error-prone, partly due to the inherent subjectivity of the detection processes presently available. In view of mitigating the subjectivity problem, this dissertation presents a tool that automates a technique for the detection and assessment of code smells in Java source code, developed as an Eclipse plugin. The technique is based upon a Binary Logistic Regression model that uses complexity metrics as independent variables and is calibrated by expert‟s knowledge. An overview of the technique is provided, the tool is described and validated by an example case study.
publishDate 2011
dc.date.none.fl_str_mv 2011-09
2011-09-01T00:00:00Z
2014-10-20T15:37:35Z
2014-10
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10362/13312
url http://hdl.handle.net/10362/13312
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799137853307879424