Prediction of the load carrying capacity of elevated steel fibre reinforced concrete slabs

Detalhes bibliográficos
Autor(a) principal: Salehian, Hamidreza
Data de Publicação: 2017
Outros Autores: Barros, Joaquim A. O.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/1822/45444
Resumo: A novel methodology is developed for predicting the load carrying capacity of elevated steel fibre reinforced concrete (E-SFRC) slab systems. In the proposed approach the depth of slab’s cross section is discretized into several layers, and the number of steel fibres per each layer is determined by considering the distribution of fibres along the depth of cross section. This information, together with the one obtained from the threepoint notched beam bending tests performed on four series of SFRC made of different concrete strength class and content of fibres, have provided the stress-crack width laws for defining the post-cracking behaviour of each layer. These constitutive laws are implemented in a numerical model developed based on the moment-rotation approach for determining the positive and negative resisting bending moment of the slab’s unit width cross section. By using the yield line theory, the load carrying capacity of ESFRC slab is predicted for the most current load conditions. Predictive performance of the proposed methodology is assessed comparing to the results recorded in experiment and the ones obtained by the numerical simulation. Finally the developed model is utilised in a parametric study to evaluate the influence of parameters that affect the load-carrying capacity of E-SFRC slabs.
id RCAP_2ed943569199bbc71920718ab0353fa6
oai_identifier_str oai:repositorium.sdum.uminho.pt:1822/45444
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Prediction of the load carrying capacity of elevated steel fibre reinforced concrete slabsElevated slabsSteel fibre reinforced concreteLoad carrying capacityYield line theoryFibre distributionEngenharia e Tecnologia::Engenharia CivilScience & TechnologyA novel methodology is developed for predicting the load carrying capacity of elevated steel fibre reinforced concrete (E-SFRC) slab systems. In the proposed approach the depth of slab’s cross section is discretized into several layers, and the number of steel fibres per each layer is determined by considering the distribution of fibres along the depth of cross section. This information, together with the one obtained from the threepoint notched beam bending tests performed on four series of SFRC made of different concrete strength class and content of fibres, have provided the stress-crack width laws for defining the post-cracking behaviour of each layer. These constitutive laws are implemented in a numerical model developed based on the moment-rotation approach for determining the positive and negative resisting bending moment of the slab’s unit width cross section. By using the yield line theory, the load carrying capacity of ESFRC slab is predicted for the most current load conditions. Predictive performance of the proposed methodology is assessed comparing to the results recorded in experiment and the ones obtained by the numerical simulation. Finally the developed model is utilised in a parametric study to evaluate the influence of parameters that affect the load-carrying capacity of E-SFRC slabs.This work is supported by FEDER funds through the Operational Program for Competitiveness Factors - COMPETE and National Funds through FCT - Portuguese Foundation for Science and Technology under the project “SlabSys – HFRC – Flat slabs for multi-storey buildings using hybrid reinforced self-compacting concrete: an innovative structural system” PTDC/ECM/120394/2010. The first author also acknowledges the financial supports provided by Seismic Geotechnical and High Performance Concrete Research Centre of Semnan Branch, Islamic Azad University.info:eu-repo/semantics/publishedVersionElsevierUniversidade do MinhoSalehian, HamidrezaBarros, Joaquim A. O.20172017-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/1822/45444eng0263-82231879-108510.1016/j.compstruct.2017.03.002info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-07-21T12:40:04Zoai:repositorium.sdum.uminho.pt:1822/45444Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T19:36:48.366272Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Prediction of the load carrying capacity of elevated steel fibre reinforced concrete slabs
title Prediction of the load carrying capacity of elevated steel fibre reinforced concrete slabs
spellingShingle Prediction of the load carrying capacity of elevated steel fibre reinforced concrete slabs
Salehian, Hamidreza
Elevated slabs
Steel fibre reinforced concrete
Load carrying capacity
Yield line theory
Fibre distribution
Engenharia e Tecnologia::Engenharia Civil
Science & Technology
title_short Prediction of the load carrying capacity of elevated steel fibre reinforced concrete slabs
title_full Prediction of the load carrying capacity of elevated steel fibre reinforced concrete slabs
title_fullStr Prediction of the load carrying capacity of elevated steel fibre reinforced concrete slabs
title_full_unstemmed Prediction of the load carrying capacity of elevated steel fibre reinforced concrete slabs
title_sort Prediction of the load carrying capacity of elevated steel fibre reinforced concrete slabs
author Salehian, Hamidreza
author_facet Salehian, Hamidreza
Barros, Joaquim A. O.
author_role author
author2 Barros, Joaquim A. O.
author2_role author
dc.contributor.none.fl_str_mv Universidade do Minho
dc.contributor.author.fl_str_mv Salehian, Hamidreza
Barros, Joaquim A. O.
dc.subject.por.fl_str_mv Elevated slabs
Steel fibre reinforced concrete
Load carrying capacity
Yield line theory
Fibre distribution
Engenharia e Tecnologia::Engenharia Civil
Science & Technology
topic Elevated slabs
Steel fibre reinforced concrete
Load carrying capacity
Yield line theory
Fibre distribution
Engenharia e Tecnologia::Engenharia Civil
Science & Technology
description A novel methodology is developed for predicting the load carrying capacity of elevated steel fibre reinforced concrete (E-SFRC) slab systems. In the proposed approach the depth of slab’s cross section is discretized into several layers, and the number of steel fibres per each layer is determined by considering the distribution of fibres along the depth of cross section. This information, together with the one obtained from the threepoint notched beam bending tests performed on four series of SFRC made of different concrete strength class and content of fibres, have provided the stress-crack width laws for defining the post-cracking behaviour of each layer. These constitutive laws are implemented in a numerical model developed based on the moment-rotation approach for determining the positive and negative resisting bending moment of the slab’s unit width cross section. By using the yield line theory, the load carrying capacity of ESFRC slab is predicted for the most current load conditions. Predictive performance of the proposed methodology is assessed comparing to the results recorded in experiment and the ones obtained by the numerical simulation. Finally the developed model is utilised in a parametric study to evaluate the influence of parameters that affect the load-carrying capacity of E-SFRC slabs.
publishDate 2017
dc.date.none.fl_str_mv 2017
2017-01-01T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/1822/45444
url http://hdl.handle.net/1822/45444
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 0263-8223
1879-1085
10.1016/j.compstruct.2017.03.002
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Elsevier
publisher.none.fl_str_mv Elsevier
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799132898748530688