Hereditary hemochromatosis: cellular response to oxidative stress

Detalhes bibliográficos
Autor(a) principal: Andrade, Lara Filipe Rocha
Data de Publicação: 2013
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10773/12495
Resumo: Iron is a key element for basic cellular functions. If iron homeostasis is not maintained it may lead to iron overload. Patients with Hereditary Hemochromatosis (HH) and with the C282Y HFE mutation have a progressive severe iron overload that, if it is not treated, may lead to tissue damage, that mostly culminate in hepatic cirrhosis and carcinoma. Having in mind that tissue damage in HH may be related with oxidative stress (OS) caused by iron toxicity, it is important to understand in what way the OS defense is acting in cells from HH patients with severe forms of iron overload. Few studies have been performed concerning the eventual prooxidant state in blood cells, which bear a major source of OS. Nevertheless, in a recent study it was shown that cultured lymphocytes (LY) from HH, when compared with cultured LY from controls and patients with secondary forms of hemochromatosis, have an increased protection against chromosome instability (CI) induced by 1,2:3,4 diepoxybutane (DEB) – an OS-related alkylating agent. This suggests an adaptive response of HH cells to the high level of OS. However, it is not known yet if the same response can be observed with other sources of iron toxicity, namely in the presence of bleomycin (BLM), that acts forming a complex with non-transferrin bound iron (NTBI). In order to better understand the oxidant status of HH blood cells and the putative adaptive response of HH cells to iron toxicity, a study was performed to characterize two selected OS parameters: evaluation of reduced glutathione (GSH) depletion and of lipid peroxidation (LPO). The study was performed in red blood cells (RBC) and lymphocytes (LY), either basal and after 36h in culture, with and without induction of OS. Induction of OS was performed with DEB and with BLM. A second objective of the present work was to test if the previously observed adaptive response of HH cells to DEB-induced OS can also be observed after induction with BLM. Characterization of the OS parameters was performed in RBC and LY from 5 HH patients with severe iron overload and 6 healthy donors (HD), at day 0 and after 36h of culture, non-treated and treated with DEB or BLM. Studies of CI were performed in BLM-induced LY from the same 5 HH patients and 6 HD. The results show that RBC from HH patients, compared with those from HD, have a larger GSH depletion and more LPO, either at day 0 and after 36h in culture medium. This suggests an increased level of OS in HH RBC. On the contrary, LY from HH patients present less GSH depletion after 36h of culture than LY from HD, being this effect more pronounced in DEB and BLM-treated cultures. Additionally, LPO levels were decreased in LY from HH patients after 36h of culture when compared with LY from HD. This result suggests that HH cultured LY, either non-treated or treated with DEB and BLM, have a still not completely understood mechanism of defense against OS. BLM-induced CI in cultured LY from HH patients was not different from the observed in cultured LY from HD. Therefore, we can postulate that toxicity induced by BLM did not increased CI in cells from HH patients with severe iron overload.
id RCAP_2f11306235038b3d5457ed4337953bc0
oai_identifier_str oai:ria.ua.pt:10773/12495
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Hereditary hemochromatosis: cellular response to oxidative stressBioquímica clínicaStresse oxidativoHemocromatoseIron is a key element for basic cellular functions. If iron homeostasis is not maintained it may lead to iron overload. Patients with Hereditary Hemochromatosis (HH) and with the C282Y HFE mutation have a progressive severe iron overload that, if it is not treated, may lead to tissue damage, that mostly culminate in hepatic cirrhosis and carcinoma. Having in mind that tissue damage in HH may be related with oxidative stress (OS) caused by iron toxicity, it is important to understand in what way the OS defense is acting in cells from HH patients with severe forms of iron overload. Few studies have been performed concerning the eventual prooxidant state in blood cells, which bear a major source of OS. Nevertheless, in a recent study it was shown that cultured lymphocytes (LY) from HH, when compared with cultured LY from controls and patients with secondary forms of hemochromatosis, have an increased protection against chromosome instability (CI) induced by 1,2:3,4 diepoxybutane (DEB) – an OS-related alkylating agent. This suggests an adaptive response of HH cells to the high level of OS. However, it is not known yet if the same response can be observed with other sources of iron toxicity, namely in the presence of bleomycin (BLM), that acts forming a complex with non-transferrin bound iron (NTBI). In order to better understand the oxidant status of HH blood cells and the putative adaptive response of HH cells to iron toxicity, a study was performed to characterize two selected OS parameters: evaluation of reduced glutathione (GSH) depletion and of lipid peroxidation (LPO). The study was performed in red blood cells (RBC) and lymphocytes (LY), either basal and after 36h in culture, with and without induction of OS. Induction of OS was performed with DEB and with BLM. A second objective of the present work was to test if the previously observed adaptive response of HH cells to DEB-induced OS can also be observed after induction with BLM. Characterization of the OS parameters was performed in RBC and LY from 5 HH patients with severe iron overload and 6 healthy donors (HD), at day 0 and after 36h of culture, non-treated and treated with DEB or BLM. Studies of CI were performed in BLM-induced LY from the same 5 HH patients and 6 HD. The results show that RBC from HH patients, compared with those from HD, have a larger GSH depletion and more LPO, either at day 0 and after 36h in culture medium. This suggests an increased level of OS in HH RBC. On the contrary, LY from HH patients present less GSH depletion after 36h of culture than LY from HD, being this effect more pronounced in DEB and BLM-treated cultures. Additionally, LPO levels were decreased in LY from HH patients after 36h of culture when compared with LY from HD. This result suggests that HH cultured LY, either non-treated or treated with DEB and BLM, have a still not completely understood mechanism of defense against OS. BLM-induced CI in cultured LY from HH patients was not different from the observed in cultured LY from HD. Therefore, we can postulate that toxicity induced by BLM did not increased CI in cells from HH patients with severe iron overload.O ferro é um dos elementos chave para as funções celulares básicas. Se a sua homeostasia não for corretamente mantida, poderá ocorrer uma sobrecarga de ferro no organismo. Os doentes com Hemocromatose Hereditária (HH), com a mutação C282Y no gene HFE, possuem uma progressiva e severa sobrecarga de ferro que, se não for tratada, pode levar a dano nos tecidos, podendo mesmo culminar em cirrose hepática e carcinoma. Tendo em conta que o dano tecidular pode estar associado ao stress oxidativo (OS) causado pela sobrecarga de ferro, é importante perceber de que modo atua o sistema de defesa contra o OS nas células dos doentes HH com forma severa de sobrecarga de ferro. Poucos estudos foram realizados sobre o potencial estado oxidante nas células do sangue, onde se encontra uma das maiores fontes de reações oxidativas. Contudo, num estudo recente foi demonstrado que linfócitos de doentes com HH, quando comparados com linfócitos de controlos e pacientes com formas secundárias de hemocromatose, apresentam uma maior proteção relativamente à instabilidade cromossómica (CI) induzida por 1,2:3,4 diepoxibutano (DEB) – um agente alquilante que provoca OS. Este estudo sugere uma resposta adaptativa das células HH a níveis elevados de OS. No entanto, ainda não se sabe se esta mesma resposta pode ser observada com outras fontes de toxicidade do ferro, nomeadamente na presença de bleomicina (BLM) cuja atividade depende da formação de complexos com o ferro não ligado à transferrina (NTBI). Para compreender melhor o estado oxidante das células do sangue dos doentes HH e a suposta resposta adaptativa das células dos doentes de HH à toxicidade do ferro, foi feita a análise de dois parâmetros de OS selecionados: avaliação da depleção da glutationa reduzida (GSH) e da peroxidação lipídica (LPO). Esta análise foi efetuada em eritrócitos (RBC) e linfócitos (LY), tanto no tempo 0 como passadas 36h em cultura, com ou sem indução de OS. O segundo objetivo deste trabalho foi testar se a BLM promove uma resposta adaptativa à CI comparável à que foi observada com o DEB. Tanto a caracterização dos parâmetros de OS como os estudos de CI foram efetuados em células de 5 doentes com HH, com elevada sobrecarga de ferro, e em células de 6 dadores saudáveis (HD). Os resultados mostraram que os RBC dos doentes com HH, comparativamente com os dos HD, apresentam uma maior depleção de GSH e maior LPO, quer ao dia 0 quer após 36h em meio de cultura. Estes resultados sugerem um aumento de OS nos RBC dos doentes. Contrariamente, os LY dos doentes de HH apresentaram menor depleção de GSH após 36h de cultura, sendo esta mais notória nas culturas induzidas com DEB e BLM. Adicionalmente, os níveis de LPO são menores em LY dos doentes de HH, após 36h de cultura, comparativamente com os dos HD. Isto sugere que culturas de LY, quer não-tratadas quer tratadas com DEB ou BLM, têm um algum tipo de mecanismo de defesa contra o OS, ainda não compreendido. A frequência de CI induzida por BLM em LY de doentes com HH não é significativamente diferente da observada em LY de HD, não se observando assim uma diferença na capacidade de resposta à BLM, entre células de doentes e controlos. Pode-se então concluir que a toxicidade induzida por BLM não aumenta a CI em células de doentes com HH com forma severa de sobrecarga de ferro.Universidade de Aveiro2018-07-20T14:00:45Z2013-01-04T00:00:00Z2013-01-042015-01-04T17:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10773/12495engAndrade, Lara Filipe Rochainfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-02-22T11:22:47Zoai:ria.ua.pt:10773/12495Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T02:48:40.052127Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Hereditary hemochromatosis: cellular response to oxidative stress
title Hereditary hemochromatosis: cellular response to oxidative stress
spellingShingle Hereditary hemochromatosis: cellular response to oxidative stress
Andrade, Lara Filipe Rocha
Bioquímica clínica
Stresse oxidativo
Hemocromatose
title_short Hereditary hemochromatosis: cellular response to oxidative stress
title_full Hereditary hemochromatosis: cellular response to oxidative stress
title_fullStr Hereditary hemochromatosis: cellular response to oxidative stress
title_full_unstemmed Hereditary hemochromatosis: cellular response to oxidative stress
title_sort Hereditary hemochromatosis: cellular response to oxidative stress
author Andrade, Lara Filipe Rocha
author_facet Andrade, Lara Filipe Rocha
author_role author
dc.contributor.author.fl_str_mv Andrade, Lara Filipe Rocha
dc.subject.por.fl_str_mv Bioquímica clínica
Stresse oxidativo
Hemocromatose
topic Bioquímica clínica
Stresse oxidativo
Hemocromatose
description Iron is a key element for basic cellular functions. If iron homeostasis is not maintained it may lead to iron overload. Patients with Hereditary Hemochromatosis (HH) and with the C282Y HFE mutation have a progressive severe iron overload that, if it is not treated, may lead to tissue damage, that mostly culminate in hepatic cirrhosis and carcinoma. Having in mind that tissue damage in HH may be related with oxidative stress (OS) caused by iron toxicity, it is important to understand in what way the OS defense is acting in cells from HH patients with severe forms of iron overload. Few studies have been performed concerning the eventual prooxidant state in blood cells, which bear a major source of OS. Nevertheless, in a recent study it was shown that cultured lymphocytes (LY) from HH, when compared with cultured LY from controls and patients with secondary forms of hemochromatosis, have an increased protection against chromosome instability (CI) induced by 1,2:3,4 diepoxybutane (DEB) – an OS-related alkylating agent. This suggests an adaptive response of HH cells to the high level of OS. However, it is not known yet if the same response can be observed with other sources of iron toxicity, namely in the presence of bleomycin (BLM), that acts forming a complex with non-transferrin bound iron (NTBI). In order to better understand the oxidant status of HH blood cells and the putative adaptive response of HH cells to iron toxicity, a study was performed to characterize two selected OS parameters: evaluation of reduced glutathione (GSH) depletion and of lipid peroxidation (LPO). The study was performed in red blood cells (RBC) and lymphocytes (LY), either basal and after 36h in culture, with and without induction of OS. Induction of OS was performed with DEB and with BLM. A second objective of the present work was to test if the previously observed adaptive response of HH cells to DEB-induced OS can also be observed after induction with BLM. Characterization of the OS parameters was performed in RBC and LY from 5 HH patients with severe iron overload and 6 healthy donors (HD), at day 0 and after 36h of culture, non-treated and treated with DEB or BLM. Studies of CI were performed in BLM-induced LY from the same 5 HH patients and 6 HD. The results show that RBC from HH patients, compared with those from HD, have a larger GSH depletion and more LPO, either at day 0 and after 36h in culture medium. This suggests an increased level of OS in HH RBC. On the contrary, LY from HH patients present less GSH depletion after 36h of culture than LY from HD, being this effect more pronounced in DEB and BLM-treated cultures. Additionally, LPO levels were decreased in LY from HH patients after 36h of culture when compared with LY from HD. This result suggests that HH cultured LY, either non-treated or treated with DEB and BLM, have a still not completely understood mechanism of defense against OS. BLM-induced CI in cultured LY from HH patients was not different from the observed in cultured LY from HD. Therefore, we can postulate that toxicity induced by BLM did not increased CI in cells from HH patients with severe iron overload.
publishDate 2013
dc.date.none.fl_str_mv 2013-01-04T00:00:00Z
2013-01-04
2015-01-04T17:00:00Z
2018-07-20T14:00:45Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10773/12495
url http://hdl.handle.net/10773/12495
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade de Aveiro
publisher.none.fl_str_mv Universidade de Aveiro
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799137537340473344