Local stability conditions for a n-dimensional periodic mapping
Autor(a) principal: | |
---|---|
Data de Publicação: | 2023 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10400.13/5439 |
Resumo: | In this paper we determine the necessary and sufficient conditions for asymptotically stability of periodic cycles for periodic difference equations by using the Jury’s conditions. Such conditions are obtained using the information of the Jacobian matrices of the individual maps, avoiding thus the computation of the Jacobian matrix of the composition operator, which in higher dimension can be an a very difficult task. We illustrate our ideas by using models in population dynamics and in economics game theory. |
id |
RCAP_2f350c635b203162d192b0f01e2627fb |
---|---|
oai_identifier_str |
oai:digituma.uma.pt:10400.13/5439 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Local stability conditions for a n-dimensional periodic mappingPeriodic difference equationsAsymptotic stabilityPeriodic solutionsApplicationsIn this paper we determine the necessary and sufficient conditions for asymptotically stability of periodic cycles for periodic difference equations by using the Jury’s conditions. Such conditions are obtained using the information of the Jacobian matrices of the individual maps, avoiding thus the computation of the Jacobian matrix of the composition operator, which in higher dimension can be an a very difficult task. We illustrate our ideas by using models in population dynamics and in economics game theory.ElsevierDigitUMaLuís, RafaelMendonça, Sandra2023-12-19T14:00:51Z20232023-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10400.13/5439engLuís, R., & Mendonça, S. (2023). Local stability conditions for a n-dimensional periodic mapping. Mathematics and Computers in Simulation.10.1016/j.matcom.2023.11.023info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-12-24T03:32:04Zoai:digituma.uma.pt:10400.13/5439Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T00:55:57.067353Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Local stability conditions for a n-dimensional periodic mapping |
title |
Local stability conditions for a n-dimensional periodic mapping |
spellingShingle |
Local stability conditions for a n-dimensional periodic mapping Luís, Rafael Periodic difference equations Asymptotic stability Periodic solutions Applications |
title_short |
Local stability conditions for a n-dimensional periodic mapping |
title_full |
Local stability conditions for a n-dimensional periodic mapping |
title_fullStr |
Local stability conditions for a n-dimensional periodic mapping |
title_full_unstemmed |
Local stability conditions for a n-dimensional periodic mapping |
title_sort |
Local stability conditions for a n-dimensional periodic mapping |
author |
Luís, Rafael |
author_facet |
Luís, Rafael Mendonça, Sandra |
author_role |
author |
author2 |
Mendonça, Sandra |
author2_role |
author |
dc.contributor.none.fl_str_mv |
DigitUMa |
dc.contributor.author.fl_str_mv |
Luís, Rafael Mendonça, Sandra |
dc.subject.por.fl_str_mv |
Periodic difference equations Asymptotic stability Periodic solutions Applications |
topic |
Periodic difference equations Asymptotic stability Periodic solutions Applications |
description |
In this paper we determine the necessary and sufficient conditions for asymptotically stability of periodic cycles for periodic difference equations by using the Jury’s conditions. Such conditions are obtained using the information of the Jacobian matrices of the individual maps, avoiding thus the computation of the Jacobian matrix of the composition operator, which in higher dimension can be an a very difficult task. We illustrate our ideas by using models in population dynamics and in economics game theory. |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023-12-19T14:00:51Z 2023 2023-01-01T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10400.13/5439 |
url |
http://hdl.handle.net/10400.13/5439 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Luís, R., & Mendonça, S. (2023). Local stability conditions for a n-dimensional periodic mapping. Mathematics and Computers in Simulation. 10.1016/j.matcom.2023.11.023 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier |
publisher.none.fl_str_mv |
Elsevier |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799136445137420288 |