Biological consequences of Vanadium effects on formation of reactive oxygen species and lipid peroxidation
Autor(a) principal: | |
---|---|
Data de Publicação: | 2023 |
Outros Autores: | , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10400.1/19359 |
Resumo: | Lipid peroxidation (LPO), a process that affects human health, can be induced by exposure to vanadium salts and compounds. LPO is often exacerbated by oxidation stress, with some forms of vanadium providing protective effects. The LPO reaction involves the oxidation of the alkene bonds, primarily in polyunsaturated fatty acids, in a chain reaction to form radical and reactive oxygen species (ROS). LPO reactions typically affect cellular membranes through direct effects on membrane structure and function as well as impacting other cellular functions due to increases in ROS. Although LPO effects on mitochondrial function have been studied in detail, other cellular components and organelles are affected. Because vanadium salts and complexes can induce ROS formation both directly and indirectly, the study of LPO arising from increased ROS should include investigations of both processes. This is made more challenging by the range of vanadium species that exist under physiological conditions and the diverse effects of these species. Thus, complex vanadium chemistry requires speciation studies of vanadium to evaluate the direct and indirect effects of the various species that are present during vanadium exposure. Undoubtedly, speciation is important in assessing how vanadium exerts effects in biological systems and is likely the underlying cause for some of the beneficial effects reported in cancerous, diabetic, neurodegenerative conditions and other diseased tissues impacted by LPO processes. Speciation of vanadium, together with investigations of ROS and LPO, should be considered in future biological studies evaluating vanadium effects on the formation of ROS and on LPO in cells, tissues, and organisms as discussed in this review. |
id |
RCAP_2f377edb9b1f00a2524dfacf89c13be1 |
---|---|
oai_identifier_str |
oai:sapientia.ualg.pt:10400.1/19359 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Biological consequences of Vanadium effects on formation of reactive oxygen species and lipid peroxidationLipid peroxidationVanadiumDecavanadateReactive oxygen speciesOxidative stressRadicalsMitochondriaSpeciationLipid peroxidation (LPO), a process that affects human health, can be induced by exposure to vanadium salts and compounds. LPO is often exacerbated by oxidation stress, with some forms of vanadium providing protective effects. The LPO reaction involves the oxidation of the alkene bonds, primarily in polyunsaturated fatty acids, in a chain reaction to form radical and reactive oxygen species (ROS). LPO reactions typically affect cellular membranes through direct effects on membrane structure and function as well as impacting other cellular functions due to increases in ROS. Although LPO effects on mitochondrial function have been studied in detail, other cellular components and organelles are affected. Because vanadium salts and complexes can induce ROS formation both directly and indirectly, the study of LPO arising from increased ROS should include investigations of both processes. This is made more challenging by the range of vanadium species that exist under physiological conditions and the diverse effects of these species. Thus, complex vanadium chemistry requires speciation studies of vanadium to evaluate the direct and indirect effects of the various species that are present during vanadium exposure. Undoubtedly, speciation is important in assessing how vanadium exerts effects in biological systems and is likely the underlying cause for some of the beneficial effects reported in cancerous, diabetic, neurodegenerative conditions and other diseased tissues impacted by LPO processes. Speciation of vanadium, together with investigations of ROS and LPO, should be considered in future biological studies evaluating vanadium effects on the formation of ROS and on LPO in cells, tissues, and organisms as discussed in this review.MDPISapientiaAureliano, ManuelDe Sousa-Coelho, Ana LuísaDolan, Connor C.Roess, Deborah A.Crans, Debbie C.2023-03-30T11:10:30Z2023-03-112023-03-28T12:57:07Z2023-03-11T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10400.1/19359engInternational Journal of Molecular Sciences 24 (6): 5382 (2023)10.3390/ijms240653821422-0067info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-07-24T10:31:48Zoai:sapientia.ualg.pt:10400.1/19359Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T20:09:00.042598Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Biological consequences of Vanadium effects on formation of reactive oxygen species and lipid peroxidation |
title |
Biological consequences of Vanadium effects on formation of reactive oxygen species and lipid peroxidation |
spellingShingle |
Biological consequences of Vanadium effects on formation of reactive oxygen species and lipid peroxidation Aureliano, Manuel Lipid peroxidation Vanadium Decavanadate Reactive oxygen species Oxidative stress Radicals Mitochondria Speciation |
title_short |
Biological consequences of Vanadium effects on formation of reactive oxygen species and lipid peroxidation |
title_full |
Biological consequences of Vanadium effects on formation of reactive oxygen species and lipid peroxidation |
title_fullStr |
Biological consequences of Vanadium effects on formation of reactive oxygen species and lipid peroxidation |
title_full_unstemmed |
Biological consequences of Vanadium effects on formation of reactive oxygen species and lipid peroxidation |
title_sort |
Biological consequences of Vanadium effects on formation of reactive oxygen species and lipid peroxidation |
author |
Aureliano, Manuel |
author_facet |
Aureliano, Manuel De Sousa-Coelho, Ana Luísa Dolan, Connor C. Roess, Deborah A. Crans, Debbie C. |
author_role |
author |
author2 |
De Sousa-Coelho, Ana Luísa Dolan, Connor C. Roess, Deborah A. Crans, Debbie C. |
author2_role |
author author author author |
dc.contributor.none.fl_str_mv |
Sapientia |
dc.contributor.author.fl_str_mv |
Aureliano, Manuel De Sousa-Coelho, Ana Luísa Dolan, Connor C. Roess, Deborah A. Crans, Debbie C. |
dc.subject.por.fl_str_mv |
Lipid peroxidation Vanadium Decavanadate Reactive oxygen species Oxidative stress Radicals Mitochondria Speciation |
topic |
Lipid peroxidation Vanadium Decavanadate Reactive oxygen species Oxidative stress Radicals Mitochondria Speciation |
description |
Lipid peroxidation (LPO), a process that affects human health, can be induced by exposure to vanadium salts and compounds. LPO is often exacerbated by oxidation stress, with some forms of vanadium providing protective effects. The LPO reaction involves the oxidation of the alkene bonds, primarily in polyunsaturated fatty acids, in a chain reaction to form radical and reactive oxygen species (ROS). LPO reactions typically affect cellular membranes through direct effects on membrane structure and function as well as impacting other cellular functions due to increases in ROS. Although LPO effects on mitochondrial function have been studied in detail, other cellular components and organelles are affected. Because vanadium salts and complexes can induce ROS formation both directly and indirectly, the study of LPO arising from increased ROS should include investigations of both processes. This is made more challenging by the range of vanadium species that exist under physiological conditions and the diverse effects of these species. Thus, complex vanadium chemistry requires speciation studies of vanadium to evaluate the direct and indirect effects of the various species that are present during vanadium exposure. Undoubtedly, speciation is important in assessing how vanadium exerts effects in biological systems and is likely the underlying cause for some of the beneficial effects reported in cancerous, diabetic, neurodegenerative conditions and other diseased tissues impacted by LPO processes. Speciation of vanadium, together with investigations of ROS and LPO, should be considered in future biological studies evaluating vanadium effects on the formation of ROS and on LPO in cells, tissues, and organisms as discussed in this review. |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023-03-30T11:10:30Z 2023-03-11 2023-03-28T12:57:07Z 2023-03-11T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10400.1/19359 |
url |
http://hdl.handle.net/10400.1/19359 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
International Journal of Molecular Sciences 24 (6): 5382 (2023) 10.3390/ijms24065382 1422-0067 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
MDPI |
publisher.none.fl_str_mv |
MDPI |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799133336333975552 |