Matrix Sylvester equations in the theory of orthogonal polynomials on the unit circle

Detalhes bibliográficos
Autor(a) principal: Branquinho, A.
Data de Publicação: 2010
Outros Autores: Rebocho, M. N.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10400.6/9055
Resumo: In this paperwe characterize sequences of orthogonal polynomials on the unit circle whose Carathéodory function satisfies a Riccati differential equation with polynomial coefficients, in terms of matrix Sylvester differential equations. For the particular case of semi-classical orthogonal polynomials on the unit circle, it is derived a characterization in terms of first order linear differential systems.
id RCAP_2f58307cc56d4afdc82aa9a1bc2064dc
oai_identifier_str oai:ubibliorum.ubi.pt:10400.6/9055
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Matrix Sylvester equations in the theory of orthogonal polynomials on the unit circleOrthogonal polynomials on the unit circleMatrix Sylvester differential equationsMatrix Riccati differential equationsMeasures on the unit circleSemi-classical classIn this paperwe characterize sequences of orthogonal polynomials on the unit circle whose Carathéodory function satisfies a Riccati differential equation with polynomial coefficients, in terms of matrix Sylvester differential equations. For the particular case of semi-classical orthogonal polynomials on the unit circle, it is derived a characterization in terms of first order linear differential systems.uBibliorumBranquinho, A.Rebocho, M. N.2020-02-06T11:10:37Z20102010-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10400.6/9055engA. Branquinho and M.N. Rebocho, Matrix Sylvester equations in the theory of orthogonal polynomials on the unit circle, Bulletin of the Belgian Mathematical Society - Simon Stevin 17 (2010), 355-376.info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-12-15T09:49:33Zoai:ubibliorum.ubi.pt:10400.6/9055Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T00:49:15.900905Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Matrix Sylvester equations in the theory of orthogonal polynomials on the unit circle
title Matrix Sylvester equations in the theory of orthogonal polynomials on the unit circle
spellingShingle Matrix Sylvester equations in the theory of orthogonal polynomials on the unit circle
Branquinho, A.
Orthogonal polynomials on the unit circle
Matrix Sylvester differential equations
Matrix Riccati differential equations
Measures on the unit circle
Semi-classical class
title_short Matrix Sylvester equations in the theory of orthogonal polynomials on the unit circle
title_full Matrix Sylvester equations in the theory of orthogonal polynomials on the unit circle
title_fullStr Matrix Sylvester equations in the theory of orthogonal polynomials on the unit circle
title_full_unstemmed Matrix Sylvester equations in the theory of orthogonal polynomials on the unit circle
title_sort Matrix Sylvester equations in the theory of orthogonal polynomials on the unit circle
author Branquinho, A.
author_facet Branquinho, A.
Rebocho, M. N.
author_role author
author2 Rebocho, M. N.
author2_role author
dc.contributor.none.fl_str_mv uBibliorum
dc.contributor.author.fl_str_mv Branquinho, A.
Rebocho, M. N.
dc.subject.por.fl_str_mv Orthogonal polynomials on the unit circle
Matrix Sylvester differential equations
Matrix Riccati differential equations
Measures on the unit circle
Semi-classical class
topic Orthogonal polynomials on the unit circle
Matrix Sylvester differential equations
Matrix Riccati differential equations
Measures on the unit circle
Semi-classical class
description In this paperwe characterize sequences of orthogonal polynomials on the unit circle whose Carathéodory function satisfies a Riccati differential equation with polynomial coefficients, in terms of matrix Sylvester differential equations. For the particular case of semi-classical orthogonal polynomials on the unit circle, it is derived a characterization in terms of first order linear differential systems.
publishDate 2010
dc.date.none.fl_str_mv 2010
2010-01-01T00:00:00Z
2020-02-06T11:10:37Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10400.6/9055
url http://hdl.handle.net/10400.6/9055
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv A. Branquinho and M.N. Rebocho, Matrix Sylvester equations in the theory of orthogonal polynomials on the unit circle, Bulletin of the Belgian Mathematical Society - Simon Stevin 17 (2010), 355-376.
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799136385249050624