Matrix Sylvester equations in the theory of orthogonal polynomials on the unit circle
Autor(a) principal: | |
---|---|
Data de Publicação: | 2010 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10400.6/9055 |
Resumo: | In this paperwe characterize sequences of orthogonal polynomials on the unit circle whose Carathéodory function satisfies a Riccati differential equation with polynomial coefficients, in terms of matrix Sylvester differential equations. For the particular case of semi-classical orthogonal polynomials on the unit circle, it is derived a characterization in terms of first order linear differential systems. |
id |
RCAP_2f58307cc56d4afdc82aa9a1bc2064dc |
---|---|
oai_identifier_str |
oai:ubibliorum.ubi.pt:10400.6/9055 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Matrix Sylvester equations in the theory of orthogonal polynomials on the unit circleOrthogonal polynomials on the unit circleMatrix Sylvester differential equationsMatrix Riccati differential equationsMeasures on the unit circleSemi-classical classIn this paperwe characterize sequences of orthogonal polynomials on the unit circle whose Carathéodory function satisfies a Riccati differential equation with polynomial coefficients, in terms of matrix Sylvester differential equations. For the particular case of semi-classical orthogonal polynomials on the unit circle, it is derived a characterization in terms of first order linear differential systems.uBibliorumBranquinho, A.Rebocho, M. N.2020-02-06T11:10:37Z20102010-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10400.6/9055engA. Branquinho and M.N. Rebocho, Matrix Sylvester equations in the theory of orthogonal polynomials on the unit circle, Bulletin of the Belgian Mathematical Society - Simon Stevin 17 (2010), 355-376.info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-12-15T09:49:33Zoai:ubibliorum.ubi.pt:10400.6/9055Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T00:49:15.900905Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Matrix Sylvester equations in the theory of orthogonal polynomials on the unit circle |
title |
Matrix Sylvester equations in the theory of orthogonal polynomials on the unit circle |
spellingShingle |
Matrix Sylvester equations in the theory of orthogonal polynomials on the unit circle Branquinho, A. Orthogonal polynomials on the unit circle Matrix Sylvester differential equations Matrix Riccati differential equations Measures on the unit circle Semi-classical class |
title_short |
Matrix Sylvester equations in the theory of orthogonal polynomials on the unit circle |
title_full |
Matrix Sylvester equations in the theory of orthogonal polynomials on the unit circle |
title_fullStr |
Matrix Sylvester equations in the theory of orthogonal polynomials on the unit circle |
title_full_unstemmed |
Matrix Sylvester equations in the theory of orthogonal polynomials on the unit circle |
title_sort |
Matrix Sylvester equations in the theory of orthogonal polynomials on the unit circle |
author |
Branquinho, A. |
author_facet |
Branquinho, A. Rebocho, M. N. |
author_role |
author |
author2 |
Rebocho, M. N. |
author2_role |
author |
dc.contributor.none.fl_str_mv |
uBibliorum |
dc.contributor.author.fl_str_mv |
Branquinho, A. Rebocho, M. N. |
dc.subject.por.fl_str_mv |
Orthogonal polynomials on the unit circle Matrix Sylvester differential equations Matrix Riccati differential equations Measures on the unit circle Semi-classical class |
topic |
Orthogonal polynomials on the unit circle Matrix Sylvester differential equations Matrix Riccati differential equations Measures on the unit circle Semi-classical class |
description |
In this paperwe characterize sequences of orthogonal polynomials on the unit circle whose Carathéodory function satisfies a Riccati differential equation with polynomial coefficients, in terms of matrix Sylvester differential equations. For the particular case of semi-classical orthogonal polynomials on the unit circle, it is derived a characterization in terms of first order linear differential systems. |
publishDate |
2010 |
dc.date.none.fl_str_mv |
2010 2010-01-01T00:00:00Z 2020-02-06T11:10:37Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10400.6/9055 |
url |
http://hdl.handle.net/10400.6/9055 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
A. Branquinho and M.N. Rebocho, Matrix Sylvester equations in the theory of orthogonal polynomials on the unit circle, Bulletin of the Belgian Mathematical Society - Simon Stevin 17 (2010), 355-376. |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799136385249050624 |